|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed |
|
from transformers import pipeline |
|
import torch |
|
import json |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_tokenizer(model_ckpt): |
|
return AutoTokenizer.from_pretrained(model_ckpt) |
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_model(model_ckpt): |
|
model = AutoModelForCausalLM.from_pretrained(model_ckpt, low_cpu_mem_usage=True) |
|
return model |
|
|
|
@st.cache() |
|
def load_examples(): |
|
with open("examples.json", "r") as f: |
|
examples = json.load(f) |
|
return examples |
|
|
|
st.set_page_config(page_icon=':laptop:', layout="wide") |
|
|
|
|
|
st.sidebar.header("Models") |
|
models = ["CodeParrot", "OPT", "InCoder"] |
|
selected_models = st.sidebar.multiselect('Select code generation models to compare:', |
|
models, |
|
default=["CodeParrot"]) |
|
st.sidebar.header("Tasks") |
|
tasks = [" ","Model architecture", "Model evaluation", "Pretraining dataset", "Prompting"] |
|
selected_task = st.sidebar.selectbox("Select a task:", tasks) |
|
|
|
architectures = {} |
|
datasets = {} |
|
pipelines = {} |
|
|
|
if selected_task = " ": |
|
st.title("Code Generation Models comparison π»") |
|
with open("intro.txt", "r") as f: |
|
intro = f.read() |
|
st.markdown(intro) |
|
|
|
elif selected_task == "Pretraining dataset": |
|
st.title("Pretraining datasets π") |
|
for model in selected_models: |
|
with open(f"datasets/{model.lower()}.txt", "r") as f: |
|
text = f.read() |
|
st.markdown(f"## {model}:") |
|
st.markdown(text) |
|
|
|
elif selected_task == "Model architecture": |
|
st.title("Model architecture π¨") |
|
for model in selected_models: |
|
with open(f"architectures/{model.lower()}.txt", "r") as f: |
|
text = f.read() |
|
st.markdown(f"## {model}:") |
|
st.markdown(text) |
|
|
|
elif selected_task == "Prompting": |
|
for model in selected_models: |
|
if model == "CodeParrot": |
|
tokenizer = load_tokenizer("lvwerra/codeparrot") |
|
model = load_model("lvwerra/codeparrot") |
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
pipelines[model] = pipe |
|
elif model == "InCoder": |
|
tokenizer = load_tokenizer("facebook/incoder-1B") |
|
model = load_model("facebook/incoder-1B") |
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
pipelines[model] = pipe |
|
else: |
|
tokenizer = load_tokenizer("facebook/opt-1.3b") |
|
model = load_model("facebook/opt-1.3b") |
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
pipelines[model] = pipe |
|
|