loubnabnl's picture
loubnabnl HF staff
reformat code
7c0d726
raw
history blame
4.16 kB
import json
import pandas as pd
import requests
from multiprocessing import Pool
from functools import partial
import streamlit as st
GITHUB_CODE = "https://huggingface.co/datasets/lvwerra/github-code"
INCODER_IMG = (
"https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/incoder.png"
)
@st.cache()
def load_examples():
with open("utils/examples.json", "r") as f:
examples = json.load(f)
return examples
def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
url = (
f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/"
)
r = requests.post(
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
)
generated_text = r.json()["data"][0]
return generated_text
st.set_page_config(page_icon=":laptop:", layout="wide")
st.sidebar.header("Models")
models = ["CodeParrot", "InCoder"]
selected_models = st.sidebar.multiselect(
"Select code generation models to compare", models, default=["CodeParrot"]
)
st.sidebar.header("Tasks")
tasks = [
" ",
"Pretraining datasets",
"Model architecture",
"Model evaluation",
"Code generation",
]
selected_task = st.sidebar.selectbox("Select a task", tasks)
if selected_task == " ":
st.title("Code Generation Models")
with open("utils/intro.txt", "r") as f:
intro = f.read()
st.markdown(intro)
elif selected_task == "Pretraining datasets":
st.title("Pretraining datasets πŸ“š")
st.markdown(
f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):"
)
df = pd.read_csv("utils/data_preview.csv")
st.dataframe(df)
for model in selected_models:
with open(f"datasets/{model.lower()}.txt", "r") as f:
text = f.read()
st.markdown(f"### {model}")
st.markdown(text)
elif selected_task == "Model architecture":
st.title("Model architecture")
for model in selected_models:
with open(f"architectures/{model.lower()}.txt", "r") as f:
text = f.read()
st.markdown(f"## {model}")
st.markdown(text)
if model == "InCoder":
st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)
elif selected_task == "Model evaluation":
st.title("Code models evaluation πŸ“Š")
with open("evaluation/intro.txt", "r") as f:
intro = f.read()
st.markdown(intro)
elif selected_task == "Code generation":
st.title("Code generation πŸ’»")
st.sidebar.header("Examples")
examples = load_examples()
example_names = [example["name"] for example in examples]
name2id = dict([(name, i) for i, name in enumerate(example_names)])
selected_example = st.sidebar.selectbox(
"Select one of the following examples or implement yours", example_names
)
example_text = examples[name2id[selected_example]]["value"]
default_length = examples[name2id[selected_example]]["length"]
st.sidebar.header("Generation settings")
temperature = st.sidebar.slider(
"Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
)
max_new_tokens = st.sidebar.slider(
"Number of tokens to generate:",
value=default_length,
min_value=8,
step=8,
max_value=256,
)
seed = st.sidebar.slider(
"Random seed:", value=42, min_value=0, step=1, max_value=1000
)
gen_prompt = st.text_area(
"Generate code with prompt:",
value=example_text,
height=220,
).strip()
if st.button("Generate code!"):
with st.spinner("Generating code..."):
# Create a multiprocessing Pool
pool = Pool()
generate_parallel = partial(
generate_code,
gen_prompt=gen_prompt,
max_new_tokens=max_new_tokens,
temperature=temperature,
seed=seed,
)
output = pool.map(generate_parallel, selected_models)
for i in range(len(output)):
st.markdown(f"**{selected_models[i]}**")
st.code(output[i])