|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed |
|
from transformers import pipeline |
|
import torch |
|
import json |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_tokenizer(model_ckpt): |
|
return AutoTokenizer.from_pretrained(model_ckpt) |
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_model(model_ckpt): |
|
model = AutoModelForCausalLM.from_pretrained(model_ckpt, low_cpu_mem_usage=True) |
|
return model |
|
|
|
@st.cache() |
|
def load_examples(): |
|
with open("examples.json", "r") as f: |
|
examples = json.load(f) |
|
return examples |
|
|
|
st.set_page_config(page_icon=':laptop:', layout="wide") |
|
|
|
|
|
st.sidebar.header("Models") |
|
models = ["CodeParrot", "OPT", "InCoder"] |
|
selected_models = st.sidebar.multiselect('Select code generation models to compare:', |
|
models, |
|
default=["CodeParrot"]) |
|
st.sidebar.header("Tasks") |
|
tasks = [" ","Model architecture", "Model evaluation", "Pretraining dataset", "Code generation"] |
|
selected_task = st.sidebar.selectbox("Select a task:", tasks) |
|
|
|
|
|
tokenizer = load_tokenizer("lvwerra/codeparrot") |
|
model = load_model("lvwerra/codeparrot") |
|
tokenizer2 = load_tokenizer("facebook/incoder-1B") |
|
model2 = load_model("facebook/incoder-1B") |
|
tokenizer3 = load_tokenizer("facebook/opt-1.3b") |
|
model3 = load_model("facebook/opt-1.3b") |
|
pipelines = {} |
|
for model in models: |
|
if model == "CodeParrot": |
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
pipelines[model] = pipe |
|
elif model == "InCoder": |
|
tokenizer = load_tokenizer("facebook/incoder-1B") |
|
model = load_model("facebook/incoder-1B") |
|
pipe = pipeline("text-generation", model=model2, tokenizer=tokenizer2) |
|
pipelines[model] = pipe |
|
else: |
|
tokenizer = load_tokenizer("facebook/opt-1.3b") |
|
model = load_model("facebook/opt-1.3b") |
|
pipe = pipeline("text-generation", model=model3, tokenizer=tokenizer3) |
|
pipelines[model] = pipe |
|
|
|
example_names = [example["name"] for example in examples] |
|
name2id = dict([(name, i) for i, name in enumerate(example_names)]) |
|
set_seed(42) |
|
gen_kwargs = {} |
|
|
|
if selected_task == " ": |
|
st.title("Code Generation Models comparison π»") |
|
with open("intro.txt", "r") as f: |
|
intro = f.read() |
|
st.markdown(intro) |
|
elif selected_task == "Pretraining dataset": |
|
st.title("Pretraining datasets π") |
|
for model in selected_models: |
|
with open(f"datasets/{model.lower()}.txt", "r") as f: |
|
text = f.read() |
|
st.markdown(f"## {model}:") |
|
st.markdown(text) |
|
elif selected_task == "Model architecture": |
|
st.title("Model architecture π¨") |
|
for model in selected_models: |
|
with open(f"architectures/{model.lower()}.txt", "r") as f: |
|
text = f.read() |
|
st.markdown(f"## {model}:") |
|
st.markdown(text) |
|
elif selected_task == "Code generation": |
|
st.title("Code generation π»") |
|
st.sidebar.header("Examples") |
|
selected_example = st.sidebar.selectbox("Select one of the following examples:", example_names) |
|
example_text = examples[name2id[selected_example]]["value"] |
|
default_length = examples[name2id[selected_example]]["length"] |
|
st.sidebar.header("Generation settings") |
|
gen_kwargs["do_sample"] = st.sidebar.radio("Decoding strategy:", ["Greedy", "Sample"]) == "Sample" |
|
gen_kwargs["max_new_tokens"] = st.sidebar.slider("Number of tokens to generate:", value=default_length, min_value=8, step=8, max_value=256) |
|
if gen_kwargs["do_sample"]: |
|
gen_kwargs["temperature"] = 0.2 |
|
gen_kwargs["top_k"] = 0 |
|
gen_kwargs["top_p"] = 0.95 |
|
gen_prompt = st.text_area("Generate code with prompt:", value=example_text, height=220,).strip() |
|
if st.button("Generate code!"): |
|
with st.spinner("Generating code..."): |
|
for model in selected_models: |
|
pipe = pipelines[model] |
|
generated_text = pipe(gen_prompt, **gen_kwargs)[0]['generated_text'] |
|
st.markdown(f"### {model}:") |
|
st.code(generated_text) |
|
|