loubnabnl's picture
loubnabnl HF staff
update table
8d58283
raw
history blame
4.29 kB
import json
import pandas as pd
import requests
from multiprocessing import Pool
from functools import partial
import streamlit as st
GITHUB_CODE = "https://huggingface.co/datasets/lvwerra/github-code"
INCODER_IMG = (
"https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/incoder.png"
)
HUMANEVAL_IMG = (
"https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/humaneval_scores.png"
)
MODELS = ["CodeParrot", "InCoder", "CodeGen", "PolyCoder"]
GENERATION_MODELS = ["CodeParrot", "InCoder"]
@st.cache()
def load_examples():
with open("utils/examples.json", "r") as f:
examples = json.load(f)
return examples
def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
url = (
f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/"
)
r = requests.post(
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
)
generated_text = r.json()["data"][0]
return generated_text
def read_markdown(path):
with open(path, "r") as f:
output = f.read()
st.markdown(output)
st.set_page_config(page_icon=":laptop:", layout="wide")
with open("utils/table_contents.txt", "r") as f:
contents = f.read()
st.sidebar.markdown(contents)
# Introduction
st.title("Code generation with 🤗")
with open("utils/intro.txt", "r") as f:
intro = f.read()
st.markdown(intro)
# Pretraining datasets
st.subheader("1 - Pretraining datasets")
read_markdown("datasets/intro.txt")
read_markdown("datasets/github_code.txt")
#st.markdown(f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):")
#df = pd.read_csv("utils/data_preview.csv")
#st.dataframe(df)
col1, col2= st.columns([1,2])
with col1:
selected_model = st.selectbox("", MODELS, key=1)
read_markdown(f"datasets/{selected_model.lower()}.txt")
# Model architecture
st.subheader("2 - Model architecture")
read_markdown("architectures/intro.txt")
col1, col2= st.columns([1,2])
with col1:
selected_model = st.selectbox("", MODELS, key=2)
read_markdown(f"architectures/{selected_model.lower()}.txt")
if selected_model == "InCoder":
st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)
# Model evaluation
st.subheader("3 - Code models evaluation")
read_markdown("evaluation/intro.txt")
st.image(INCODER_IMG, caption="Table 1: HumanEval scores", width=700)
read_markdown("evaluation/demo_humaneval.txt")
# Code generation
st.subheader("4 - Code generation ✨")
col1, col2, col3 = st.columns([7,1,6])
with col1:
st.markdown("**Models**")
selected_models = st.multiselect(
"Select code generation models to compare:", GENERATION_MODELS, default=["CodeParrot"], key=3
)
st.markdown(" ")
st.markdown("**Examples**")
examples = load_examples()
example_names = [example["name"] for example in examples]
name2id = dict([(name, i) for i, name in enumerate(example_names)])
selected_example = st.selectbox(
"Select one of the following examples or implement yours:", example_names
)
example_text = examples[name2id[selected_example]]["value"]
default_length = examples[name2id[selected_example]]["length"]
with col3:
st.markdown("**Generation settings**")
temperature = st.slider(
"Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
)
max_new_tokens = st.slider(
"Number of tokens to generate:",
value=default_length,
min_value=8,
step=8,
max_value=256,
)
seed = st.slider(
"Random seed:", value=42, min_value=0, step=1, max_value=1000
)
gen_prompt = st.text_area(
"Generate code with prompt:",
value=example_text,
height=200,
).strip()
if st.button("Generate code!"):
with st.spinner("Generating code..."):
# Create a multiprocessing Pool
pool = Pool()
generate_parallel = partial(
generate_code,
gen_prompt=gen_prompt,
max_new_tokens=max_new_tokens,
temperature=temperature,
seed=seed,
)
output = pool.map(generate_parallel, selected_models)
for i in range(len(output)):
st.markdown(f"**{selected_models[i]}**")
st.code(output[i])