|
import json |
|
import os |
|
import pandas as pd |
|
import requests |
|
import threading |
|
import streamlit as st |
|
from datasets import load_dataset, load_metric |
|
|
|
MODELS = ["CodeParrot", "InCoder", "CodeGen", "PolyCoder"] |
|
GENERATION_MODELS = ["CodeParrot", "InCoder", "CodeGen"] |
|
|
|
|
|
@st.cache() |
|
def load_examples(): |
|
with open("utils/examples.json", "r") as f: |
|
examples = json.load(f) |
|
return examples |
|
|
|
|
|
def load_evaluation(): |
|
|
|
os.environ["HF_ALLOW_CODE_EVAL"] = "1" |
|
human_eval = load_dataset("openai_humaneval") |
|
entry_point = f"check({human_eval['test'][2]['entry_point']})" |
|
test_func = "\n" + human_eval["test"][2]["test"] + "\n" + entry_point |
|
code_eval = load_metric("code_eval") |
|
return code_eval, test_func |
|
|
|
|
|
def read_markdown(path): |
|
with open(path, "r") as f: |
|
output = f.read() |
|
st.markdown(output, unsafe_allow_html=True) |
|
|
|
|
|
def generate_code( |
|
generations, model_name, gen_prompt, max_new_tokens, temperature, seed |
|
): |
|
|
|
url = ( |
|
f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/" |
|
) |
|
r = requests.post( |
|
url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]} |
|
) |
|
generated_text = r.json()["data"][0] |
|
generations.append({model_name: generated_text}) |
|
|
|
|
|
def generate_code_threads( |
|
generations, models, gen_prompt, max_new_tokens, temperature, seed |
|
): |
|
threads = [] |
|
for model_name in models: |
|
|
|
threads.append( |
|
threading.Thread( |
|
target=generate_code, |
|
args=( |
|
generations, |
|
model_name, |
|
gen_prompt, |
|
max_new_tokens, |
|
temperature, |
|
seed, |
|
), |
|
) |
|
) |
|
threads[-1].start() |
|
|
|
for t in threads: |
|
t.join() |
|
|
|
@st.cache(show_spinner=False) |
|
def generate_teaser(gen_prompt): |
|
generations = [] |
|
generate_code(generations, "CodeGen", gen_prompt, 10, 0.2, 42) |
|
return generations[0]["CodeGen"] |
|
|
|
st.set_page_config(page_icon=":laptop:", layout="wide") |
|
with open("utils/table_contents.md", "r") as f: |
|
contents = f.read() |
|
|
|
st.sidebar.markdown(contents) |
|
|
|
|
|
st.title("Code generation with π€") |
|
read_markdown("utils/summary.md") |
|
|
|
example_text = "def print_hello_world():" |
|
col1, col2, col3 = st.columns([1, 2, 1]) |
|
with col2: |
|
gen_prompt = st.text_area( |
|
"", |
|
value=example_text, |
|
height=100, |
|
).strip() |
|
if st.button("Generate code!", key=1): |
|
with st.spinner("Generating code..."): |
|
st.code(generate_teaser(gen_prompt)) |
|
read_markdown("utils/intro.md") |
|
|
|
|
|
st.subheader("1 - Code datasets") |
|
read_markdown("datasets/intro.md") |
|
read_markdown("datasets/github_code.md") |
|
col1, col2 = st.columns([1, 2]) |
|
with col1: |
|
selected_model = st.selectbox("", MODELS, key=1) |
|
read_markdown(f"datasets/{selected_model.lower()}.md") |
|
|
|
|
|
|
|
st.subheader("2 - Model architecture") |
|
read_markdown("architectures/intro.md") |
|
col1, col2 = st.columns([1, 2]) |
|
with col1: |
|
selected_model = st.selectbox("", MODELS, key=2) |
|
read_markdown(f"architectures/{selected_model.lower()}.md") |
|
|
|
|
|
st.subheader("3 - Code model evaluation") |
|
read_markdown("evaluation/intro.md") |
|
read_markdown("evaluation/demo_humaneval.md") |
|
|
|
st.markdown("Below you can try solving this problem or visualize the solution of CodeParrot:") |
|
with open("evaluation/problem.md", "r") as f: |
|
problem = f.read() |
|
with open("evaluation/solution.md", "r") as f: |
|
solution = f.read() |
|
|
|
candidate_solution = st.text_area( |
|
"Complete the problem:", |
|
value=problem, |
|
height=240, |
|
).strip() |
|
if st.button("Test my solution", key=2): |
|
with st.spinner("Testing..."): |
|
code_eval, test_func = load_evaluation() |
|
test_cases = [test_func] |
|
candidates = [[candidate_solution]] |
|
pass_at_k, _ = code_eval.compute(references=test_cases, predictions=candidates) |
|
text = "Your solution didn't pass the test, pass@1 is 0 π" if pass_at_k['pass@1'] < 1 else "Congrats your pass@1 is 1! π" |
|
st.markdown(text) |
|
if st.button("Show model solution", key=3): |
|
st.markdown(solution) |
|
|
|
|
|
st.subheader("4 - Code generation β¨") |
|
read_markdown("generation/intro.md") |
|
col1, col2, col3 = st.columns([7, 1, 6]) |
|
with col1: |
|
st.markdown("**Models**") |
|
selected_models = st.multiselect( |
|
"Select code generation models to compare:", |
|
GENERATION_MODELS, |
|
default=GENERATION_MODELS, |
|
key=3, |
|
) |
|
st.markdown(" ") |
|
st.markdown("**Examples**") |
|
examples = load_examples() |
|
example_names = [example["name"] for example in examples] |
|
name2id = dict([(name, i) for i, name in enumerate(example_names)]) |
|
selected_example = st.selectbox( |
|
"Select one of the following examples or implement yours:", example_names |
|
) |
|
example_text = examples[name2id[selected_example]]["value"] |
|
default_length = examples[name2id[selected_example]]["length"] |
|
with col3: |
|
st.markdown("**Generation settings**") |
|
temperature = st.slider( |
|
"Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0 |
|
) |
|
max_new_tokens = st.slider( |
|
"Number of tokens to generate:", |
|
value=default_length, |
|
min_value=8, |
|
step=4, |
|
max_value=256, |
|
) |
|
seed = st.slider("Random seed:", value=42, min_value=0, step=1, max_value=1000) |
|
gen_prompt = st.text_area( |
|
"Generate code with prompt:", |
|
value=example_text, |
|
height=200, |
|
).strip() |
|
if st.button("Generate code!", key=4): |
|
with st.spinner("Generating code..."): |
|
|
|
generations = [] |
|
generate_code_threads( |
|
generations, |
|
selected_models, |
|
gen_prompt=gen_prompt, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
seed=seed, |
|
) |
|
for i in range(len(generations)): |
|
st.markdown(f"**{selected_models[i]}**") |
|
for j in range(len(generations)): |
|
if selected_models[i] in generations[j].keys(): |
|
st.code(generations[j][selected_models[i]]) |
|
if len(generations) < len(selected_models): |
|
st.markdown("<span style='color:red'>Warning: Some models run into timeout, you can try generating code using the original subspaces: [InCoder](https://huggingface.co/spaces/loubnabnl/incoder-subspace), [CodeGen](https://huggingface.co/spaces/loubnabnl/codegen-subspace), [CodeParrot](https://huggingface.co/spaces/loubnabnl/codeparrot-subspace)</span>", unsafe_allow_html=True) |
|
|
|
|
|
st.subheader("Resources") |
|
read_markdown("utils/resources.md") |
|
|