make blog
Browse files
app.py
CHANGED
@@ -33,91 +33,8 @@ def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
|
|
33 |
st.set_page_config(page_icon=":laptop:", layout="wide")
|
34 |
|
35 |
# Introduction
|
36 |
-
st.title("Code
|
37 |
with open("utils/intro.txt", "r") as f:
|
38 |
intro = f.read()
|
39 |
st.markdown(intro)
|
40 |
|
41 |
-
# Pretraining datasets
|
42 |
-
st.title("1 - Pretraining datasets π")
|
43 |
-
st.markdown(
|
44 |
-
f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):"
|
45 |
-
)
|
46 |
-
df = pd.read_csv("utils/data_preview.csv")
|
47 |
-
st.dataframe(df)
|
48 |
-
st.header("Model")
|
49 |
-
selected_model = st.selectbox(
|
50 |
-
"Select a code generation model", MODELS, default=["CodeParrot"]
|
51 |
-
)
|
52 |
-
with open(f"datasets/{selected_model.lower()}.txt", "r") as f:
|
53 |
-
text = f.read()
|
54 |
-
st.markdown(text)
|
55 |
-
|
56 |
-
# Model architecture
|
57 |
-
st.title("Model architecture")
|
58 |
-
st.markdow("Most code generation models use GPT style architectures trained on code. Some use encoder-decoder architectures such as AlphaCode.")
|
59 |
-
st.header("Model")
|
60 |
-
selected_model = st.selectbox(
|
61 |
-
"Select a code generation model", MODELS, default=["CodeParrot"]
|
62 |
-
)
|
63 |
-
with open(f"architectures/{selected_model.lower()}.txt", "r") as f:
|
64 |
-
text = f.read()
|
65 |
-
st.markdown(text)
|
66 |
-
if model == "InCoder":
|
67 |
-
st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)
|
68 |
-
|
69 |
-
# Model evaluation
|
70 |
-
st.title("Code models evaluation π")
|
71 |
-
with open("evaluation/intro.txt", "r") as f:
|
72 |
-
intro = f.read()
|
73 |
-
st.markdown(intro)
|
74 |
-
|
75 |
-
# Code generation
|
76 |
-
st.title("Code generation π»")
|
77 |
-
st.header("Models")
|
78 |
-
selected_models = st.sidebar.multiselect(
|
79 |
-
"Select code generation models to compare", MODELS, default=["CodeParrot"]
|
80 |
-
)
|
81 |
-
st.header("Examples")
|
82 |
-
examples = load_examples()
|
83 |
-
example_names = [example["name"] for example in examples]
|
84 |
-
name2id = dict([(name, i) for i, name in enumerate(example_names)])
|
85 |
-
selected_example = st.selectbox(
|
86 |
-
"Select one of the following examples or implement yours", example_names
|
87 |
-
)
|
88 |
-
example_text = examples[name2id[selected_example]]["value"]
|
89 |
-
default_length = examples[name2id[selected_example]]["length"]
|
90 |
-
st.header("Generation settings")
|
91 |
-
temperature = st.slider(
|
92 |
-
"Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
|
93 |
-
)
|
94 |
-
max_new_tokens = st.slider(
|
95 |
-
"Number of tokens to generate:",
|
96 |
-
value=default_length,
|
97 |
-
min_value=8,
|
98 |
-
step=8,
|
99 |
-
max_value=256,
|
100 |
-
)
|
101 |
-
seed = st.slider(
|
102 |
-
"Random seed:", value=42, min_value=0, step=1, max_value=1000
|
103 |
-
)
|
104 |
-
gen_prompt = st.text_area(
|
105 |
-
"Generate code with prompt:",
|
106 |
-
value=example_text,
|
107 |
-
height=220,
|
108 |
-
).strip()
|
109 |
-
if st.button("Generate code!"):
|
110 |
-
with st.spinner("Generating code..."):
|
111 |
-
# Create a multiprocessing Pool
|
112 |
-
pool = Pool()
|
113 |
-
generate_parallel = partial(
|
114 |
-
generate_code,
|
115 |
-
gen_prompt=gen_prompt,
|
116 |
-
max_new_tokens=max_new_tokens,
|
117 |
-
temperature=temperature,
|
118 |
-
seed=seed,
|
119 |
-
)
|
120 |
-
output = pool.map(generate_parallel, selected_models)
|
121 |
-
for i in range(len(output)):
|
122 |
-
st.markdown(f"**{selected_models[i]}**")
|
123 |
-
st.code(output[i])
|
|
|
33 |
st.set_page_config(page_icon=":laptop:", layout="wide")
|
34 |
|
35 |
# Introduction
|
36 |
+
st.title("Code generation with π€")
|
37 |
with open("utils/intro.txt", "r") as f:
|
38 |
intro = f.read()
|
39 |
st.markdown(intro)
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|