add files
Browse files
.ipynb_checkpoints/app-checkpoint.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
|
3 |
+
from transformers import pipeline
|
4 |
+
import torch
|
5 |
+
import json
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
@st.cache(allow_output_mutation=True)
|
9 |
+
def load_tokenizer(model_ckpt):
|
10 |
+
return AutoTokenizer.from_pretrained(model_ckpt)
|
11 |
+
|
12 |
+
@st.cache(allow_output_mutation=True)
|
13 |
+
def load_model(model_ckpt):
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_ckpt, low_cpu_mem_usage=True)
|
15 |
+
return model
|
16 |
+
|
17 |
+
@st.cache()
|
18 |
+
def load_examples():
|
19 |
+
with open("examples.json", "r") as f:
|
20 |
+
examples = json.load(f)
|
21 |
+
return examples
|
22 |
+
|
23 |
+
st.set_page_config(page_icon=':laptop:', layout="wide")
|
24 |
+
|
25 |
+
|
26 |
+
st.sidebar.header("Models")
|
27 |
+
models = ["CodeParrot", "OPT", "InCoder"]
|
28 |
+
selected_models = st.sidebar.multiselect('Select code generation models to compare:',
|
29 |
+
models,
|
30 |
+
default=["CodeParrot"])
|
31 |
+
st.sidebar.header("Tasks")
|
32 |
+
tasks = [" ", "Model evaluation", "Pretraining datasets", "Model architecture", "Code generation"]
|
33 |
+
selected_task = st.sidebar.selectbox("Select a task:", tasks)
|
34 |
+
|
35 |
+
|
36 |
+
tokenizer1 = load_tokenizer("lvwerra/codeparrot")
|
37 |
+
model1 = load_model("lvwerra/codeparrot")
|
38 |
+
tokenizer2 = load_tokenizer("facebook/incoder-1B")
|
39 |
+
model2 = load_model("facebook/incoder-1B")
|
40 |
+
#tokenizer3 = load_tokenizer("facebook/opt-1.3b")
|
41 |
+
#model3 = load_model("facebook/opt-1.3b")
|
42 |
+
pipelines = {}
|
43 |
+
for element in models:
|
44 |
+
if element == "CodeParrot":
|
45 |
+
pipelines[element] = pipeline("text-generation", model=model1, tokenizer=tokenizer1)
|
46 |
+
elif element == "InCoder":
|
47 |
+
tokenizer = load_tokenizer("facebook/incoder-1B")
|
48 |
+
model = load_model("facebook/incoder-1B")
|
49 |
+
pipelines[element] = pipeline("text-generation", model=model2, tokenizer=tokenizer2)
|
50 |
+
#else:
|
51 |
+
# tokenizer = load_tokenizer("facebook/opt-1.3b")
|
52 |
+
# model = load_model("facebook/opt-1.3b")
|
53 |
+
# pipelines[element] = pipeline("text-generation", model=model3, tokenizer=tokenizer3)
|
54 |
+
|
55 |
+
examples = load_examples()
|
56 |
+
example_names = [example["name"] for example in examples]
|
57 |
+
name2id = dict([(name, i) for i, name in enumerate(example_names)])
|
58 |
+
set_seed(42)
|
59 |
+
gen_kwargs = {}
|
60 |
+
|
61 |
+
if selected_task == " ":
|
62 |
+
st.title("Code Generation Models comparison")
|
63 |
+
with open("intro.txt", "r") as f:
|
64 |
+
intro = f.read()
|
65 |
+
st.markdown(intro)
|
66 |
+
elif selected_task == "Pretraining datasets":
|
67 |
+
st.title("Pretraining datasets π")
|
68 |
+
st.markdown("Preview of some code files from Github repositories")
|
69 |
+
df = pd.read_csv("preview-github-data.csv")
|
70 |
+
st.dataframe(df)
|
71 |
+
for model in selected_models:
|
72 |
+
with open(f"datasets/{model.lower()}.txt", "r") as f:
|
73 |
+
text = f.read()
|
74 |
+
st.markdown(f"### {model}:")
|
75 |
+
st.markdown(text)
|
76 |
+
elif selected_task == "Model architecture":
|
77 |
+
st.title("Model architecture π¨")
|
78 |
+
for model in selected_models:
|
79 |
+
with open(f"architectures/{model.lower()}.txt", "r") as f:
|
80 |
+
text = f.read()
|
81 |
+
st.markdown(f"## {model}:")
|
82 |
+
st.markdown(text)
|
83 |
+
elif selected_task == "Model evaluation":
|
84 |
+
st.title("Code models evaluation π")
|
85 |
+
with open("evaluation/intro.txt", "r") as f:
|
86 |
+
intro = f.read()
|
87 |
+
st.markdown(intro)
|
88 |
+
elif selected_task == "Code generation":
|
89 |
+
st.title("Code generation π»")
|
90 |
+
st.sidebar.header("Examples")
|
91 |
+
selected_example = st.sidebar.selectbox("Select one of the following examples:", example_names)
|
92 |
+
example_text = examples[name2id[selected_example]]["value"]
|
93 |
+
default_length = examples[name2id[selected_example]]["length"]
|
94 |
+
st.sidebar.header("Generation settings")
|
95 |
+
gen_kwargs["do_sample"] = st.sidebar.radio("Decoding strategy:", ["Greedy", "Sample"]) == "Sample"
|
96 |
+
gen_kwargs["max_new_tokens"] = st.sidebar.slider("Number of tokens to generate:", value=default_length, min_value=8, step=8, max_value=256)
|
97 |
+
if gen_kwargs["do_sample"]:
|
98 |
+
gen_kwargs["temperature"] = 0.2
|
99 |
+
gen_kwargs["top_k"] = 0
|
100 |
+
gen_kwargs["top_p"] = 0.95
|
101 |
+
gen_prompt = st.text_area("Generate code with prompt:", value=example_text, height=220,).strip()
|
102 |
+
if st.button("Generate code!"):
|
103 |
+
with st.spinner("Generating code..."):
|
104 |
+
for model in selected_models:
|
105 |
+
if model != "OPT":
|
106 |
+
pipe = pipelines[model]
|
107 |
+
generated_text = pipe(gen_prompt, **gen_kwargs)[0]['generated_text']
|
108 |
+
st.markdown(f"{model}:")
|
109 |
+
st.code(generated_text)
|
app.py
CHANGED
@@ -29,7 +29,7 @@ selected_models = st.sidebar.multiselect('Select code generation models to compa
|
|
29 |
models,
|
30 |
default=["CodeParrot"])
|
31 |
st.sidebar.header("Tasks")
|
32 |
-
tasks = [" ", "Model evaluation", "Pretraining
|
33 |
selected_task = st.sidebar.selectbox("Select a task:", tasks)
|
34 |
|
35 |
|
@@ -63,7 +63,7 @@ if selected_task == " ":
|
|
63 |
with open("intro.txt", "r") as f:
|
64 |
intro = f.read()
|
65 |
st.markdown(intro)
|
66 |
-
elif selected_task == "Pretraining
|
67 |
st.title("Pretraining datasets π")
|
68 |
st.markdown("Preview of some code files from Github repositories")
|
69 |
df = pd.read_csv("preview-github-data.csv")
|
|
|
29 |
models,
|
30 |
default=["CodeParrot"])
|
31 |
st.sidebar.header("Tasks")
|
32 |
+
tasks = [" ", "Model evaluation", "Pretraining datasets", "Model architecture", "Code generation"]
|
33 |
selected_task = st.sidebar.selectbox("Select a task:", tasks)
|
34 |
|
35 |
|
|
|
63 |
with open("intro.txt", "r") as f:
|
64 |
intro = f.read()
|
65 |
st.markdown(intro)
|
66 |
+
elif selected_task == "Pretraining datasets":
|
67 |
st.title("Pretraining datasets π")
|
68 |
st.markdown("Preview of some code files from Github repositories")
|
69 |
df = pd.read_csv("preview-github-data.csv")
|
evaluation/.ipynb_checkpoints/intro-checkpoint.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
A popular evaluatrion framework for code generation models is the [pass@k](https://huggingface.co/metrics/code_eval) metric on [HumanEval](https://huggingface.co/datasets/openai_humaneval) dataset, which was introduced in [Codex paper](https://arxiv.org/pdf/2107.03374v2.pdf). The dataset includes 164 handwritten programming problems. In the pass@k metric, k code samples are generated per problem, a problem is considered solved if any sample passes the unit tests and the total fraction of problems solved is reported. Below are some examples for the selcted models.
|