LinReg / app.py
coeuslearning's picture
Update app.py
85ac5a4 verified
raw
history blame
1.27 kB
import numpy as np
import pandas as pd
import statsmodels.api as sm
from sklearn.preprocessing import StandardScaler
import gradio as gr
import pickle
with open ("scaled_obj.pkl", "rb") as f:
sc_object = pickle.load(f)
with open ("scaled_model.pkl", "rb") as f:
lin_model_object = pickle.load(f)
def fn_predict(Total_Revenue,Operating_Cost,Total_Assets,Total_Liabilities,Stock_Price,Market_Cap,EBITDA,RD_Expenses,Number_of_Employees):
df = np.array([[Total_Revenue,Operating_Cost,Total_Assets,Total_Liabilities,Stock_Price,Market_Cap,EBITDA,RD_Expenses,Number_of_Employees]])
scaled_new_data = sc_object.transform(df)
predictions = lin_model_object.predict(scaled_new_data)
return predictions
# Define Gradio interface
iface = gr.Interface(
fn=fn_predict,
inputs=[
gr.Number(label="Total Revenue"),
gr.Number(label="Operating Cost"),
gr.Number(label="Total Assets"),
gr.Number(label="Total Liabilities"),
gr.Number(label="Stock Price"),
gr.Number(label="Market Cap"),
gr.Number(label="EBITDA"),
gr.Number(label="R&D Expenses"),
gr.Number(label="Number of Employees")
],
outputs=gr.Textbox(elem_classes="output_textbox"),
)
# Launch the application
iface.launch()