Spaces:
Sleeping
Sleeping
import numpy as np | |
import pandas as pd | |
import statsmodels.api as sm | |
from sklearn.preprocessing import StandardScaler | |
import gradio as gr | |
import pickle | |
with open ("scaled_obj.pkl", "rb") as f: | |
sc_object = pickle.load(f) | |
with open ("scaled_model.pkl", "rb") as f: | |
lin_model_object = pickle.load(f) | |
def fn_predict(Total_Revenue,Operating_Cost,Total_Assets,Total_Liabilities,Stock_Price,Market_Cap,EBITDA,RD_Expenses,Number_of_Employees): | |
df = np.array([[Total_Revenue,Operating_Cost,Total_Assets,Total_Liabilities,Stock_Price,Market_Cap,EBITDA,RD_Expenses,Number_of_Employees]]) | |
scaled_new_data = sc_object.transform(df) | |
predictions = lin_model_object.predict(scaled_new_data) | |
return predictions | |
# Define Gradio interface | |
iface = gr.Interface( | |
fn=fn_predict, | |
inputs=[ | |
gr.Number(label="Total Revenue"), | |
gr.Number(label="Operating Cost"), | |
gr.Number(label="Total Assets"), | |
gr.Number(label="Total Liabilities"), | |
gr.Number(label="Stock Price"), | |
gr.Number(label="Market Cap"), | |
gr.Number(label="EBITDA"), | |
gr.Number(label="R&D Expenses"), | |
gr.Number(label="Number of Employees") | |
], | |
outputs=gr.Textbox(elem_classes="output_textbox"), | |
) | |
# Launch the application | |
iface.launch() | |