import os from threading import Thread from typing import Iterator import requests import json import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer HF_TOKEN = "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" ##Llama Write Token MAX_MAX_NEW_TOKENS = 8192 DEFAULT_MAX_NEW_TOKENS = 4096 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) DESCRIPTION = """\ # Llama. Protected. With Protecto. """ if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU. Please enable GPU

" if torch.cuda.is_available(): model_id = "meta-llama/Llama-2-7b-chat-hf" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", use_auth_token=HF_TOKEN) tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=HF_TOKEN) tokenizer.use_default_system_prompt = False @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 8192, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # outputs = [] # for text in streamer: # outputs.append(text) # concatenated_outputs = " ".join(outputs) # yield concatenated_outputs concatenated_outputs = "".join([r"{}".format(text) for text in streamer]) # yield concatenated_outputs # Mask the output here masked_output = mask_with_protecto(concatenated_outputs) masked_output = format_for_html(masked_output) yield masked_output def format_for_html(text): text = text.replace("<", "<") text = text.replace(">", ">") return text # Using the function api_output = "N7JI9bzqbf M1L4LPGkyj is the CEO of Apple Inc." formatted_output = format_for_html(api_output) def mask_with_protecto(text_for_prompt): mask_request_url = "https://trial.protecto.ai/api/vault/mask" headers = { "Content-Type": "application/json; charset=utf-8", "Authorization": "Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3N1ZXIiOiJQcm90ZWN0byIsImV4cGlyYXRpb25fZGF0ZSI6IjIwMjMtMTEtMDQiLCJwZXJtaXNzaW9ucyI6WyJyZWFkIiwid3JpdGUiXSwidXNlcl9uYW1lIjoiZGlwYXlhbkBjb2V1c2xlYXJuaW5nLmNvbSIsImRiX25hbWUiOiJwcm90ZWN0b19jb2V1c2xlYXJuaW5nX25ydG1mYmFrIiwiaGFzaGVkX3Bhc3N3b3JkIjoiMjIyMTI2ZWNiZTlkZTRmNWJlODdiY2QyYWFlZWRlM2FmNDc5MzMxZmNhOTUxMWU0MDRiNzkxNDM1MGI4MWUyYiJ9.DeIK00NuhM51lRwWdnUXuQSBA1aBn5AQ8qM3pIeM01U" } mask_input = { "mask": [ { "value": text_for_prompt } ] } response = requests.put(mask_request_url, headers=headers, json=mask_input) if response.status_code == 200: # Parse the masked result from the API response and format it for display masked_result = response.json() masked_result_token_value = str(masked_result["data"][0]["token_value"]) return_value = masked_result_token_value return(return_value) else: # Return an error message if the API request was not successful. return(str(response.status_code)) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), ], retry_btn=None, stop_btn=None, undo_btn=None, clear_btn=None, ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()