# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import evaluate import datasets import torch from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline from sonar.models.blaser.loader import load_blaser_model # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This new module is designed to solve this great ML task and is crafted with a lot of care. """ # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Returns: accuracy: description of the first score, another_score: description of the second score, Examples: Examples should be written in doctest format, and should illustrate how to use the function. >>> my_new_module = evaluate.load("my_new_module") >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) >>> print(results) {'accuracy': 1.0} """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class BLASER20QE(evaluate.Metric): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ 'sources': datasets.Value('string'), 'translations': datasets.Value('string'), }), # See https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions for the data types # Homepage of the module for documentation homepage="http://module.homepage", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"] ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" self.text_embedder = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder", tokenizer="text_sonar_basic_encoder") self.blaser_qe = load_blaser_model("blaser_2_0_qe").eval() #self.blaser_ref = load_blaser_model("blaser_2_0_ref").eval() def _compute(self, sources, translations): """Returns the scores""" # TODO: adjust the languages src_embs = text_embedder.predict(sources, source_lang="eng_Latn") mt_embs = text_embedder.predict(translations, source_lang="eng_Latn") with torch.inference_mode(): #ref_score = blaser_ref(src=src_embs, ref=ref_embs, mt=mt_embs).mean().item() qe_score = blaser_qe(src=src_embs, mt=mt_embs).mean().item() return { "BLASER 2.0-QE": qe_score, }