Spaces:
Running
Running
File size: 14,618 Bytes
e16fd64 923aff9 e16fd64 923aff9 e16fd64 923aff9 69c36b6 923aff9 e16fd64 69c36b6 e16fd64 923aff9 69c36b6 923aff9 69c36b6 923aff9 69c36b6 923aff9 e16fd64 69c36b6 e16fd64 923aff9 e16fd64 923aff9 e16fd64 35378f6 923aff9 e16fd64 923aff9 35378f6 923aff9 fa0181f 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 e16fd64 b345ff4 923aff9 b345ff4 923aff9 69c36b6 923aff9 69c36b6 923aff9 b345ff4 923aff9 e16fd64 35378f6 923aff9 e16fd64 35378f6 e16fd64 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 923aff9 35378f6 e16fd64 35378f6 923aff9 b345ff4 923aff9 69c36b6 923aff9 e16fd64 923aff9 e16fd64 35378f6 923aff9 e16fd64 923aff9 e16fd64 69c36b6 923aff9 e16fd64 69c36b6 e16fd64 69c36b6 923aff9 e16fd64 69c36b6 e16fd64 923aff9 e16fd64 923aff9 e16fd64 35378f6 923aff9 35378f6 e16fd64 35378f6 923aff9 e16fd64 923aff9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
import gradio as gr
import os
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from datetime import datetime, timedelta
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CLEMSCORE_TEXT, MULTIMODAL_NAME, TEXT_NAME, HF_REPO
from src.leaderboard_utils import query_search, get_github_data
from src.plot_utils import split_models, plotly_plot, get_plot_df, update_open_models, update_closed_models
from src.plot_utils import reset_show_all, reset_show_names, reset_show_legend, reset_mobile_view
from src.version_utils import get_versions_data
"""
CONSTANTS
"""
# For restarting the gradio application every 24 Hrs
TIME = 43200 # in seconds # Reload will not work locally - requires HFToken # The app launches locally as expected - only without the reload utility
# For Leaderboard table
dataframe_height = 800 # Height of the table in pixels # Set on average considering all possible devices
"""
AUTO RESTART HF SPACE
"""
HF_TOKEN = os.environ.get("H4_TOKEN", None)
api = HfApi()
def restart_space():
api.restart_space(repo_id=HF_REPO, token=HF_TOKEN)
"""
GITHUB UTILS
"""
github_data = get_github_data()
text_leaderboard = github_data["text"][0] # Get the text-only leaderboard for its available latest version
multimodal_leaderboard = github_data["multimodal"][0] # Get multimodal leaderboard for its available latest version.
# Show only First 4 columns for the leaderboards
text_leaderboard = text_leaderboard.iloc[:, :4]
print(f"Showing the following columns for the latest leaderboard: {text_leaderboard.columns}")
multimodal_leaderboard = multimodal_leaderboard.iloc[:, :4]
print(f"Showing the following columns for the multimodal leaderboard: {multimodal_leaderboard.columns}")
"""
VERSIONS UTILS
"""
versions_data = get_versions_data()
latest_version = versions_data['latest'] # Always show latest version in text-only benchmark
last_updated_date = versions_data['date']
version_names = list(versions_data.keys())
version_names = [v for v in version_names if v.startswith("v")] # Remove "latest" and "date" keys
global version_df
version_df = versions_data[latest_version]
def select_version_df(name):
return versions_data[name]
"""
MAIN APPLICATION
"""
hf_app = gr.Blocks()
with hf_app:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
"""
####################### FIRST TAB - TEXT-LEADERBOARD #######################
"""
with gr.TabItem(TEXT_NAME, elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for models - separate multiple queries with `;` and press ENTER...",
show_label=False,
elem_id="search-bar",
)
leaderboard_table = gr.Dataframe(
value=text_leaderboard,
elem_id="text-leaderboard-table",
interactive=False,
visible=True,
height=dataframe_height
)
# Show information about the clemscore and last updated date below the table
gr.HTML(CLEMSCORE_TEXT)
gr.HTML(f"Last updated - {github_data['date']}")
# Add a dummy leaderboard to handle search queries in leaderboard_table
# This will show a temporary leaderboard based on the searched value
dummy_leaderboard_table = gr.Dataframe(
value=text_leaderboard,
elem_id="text-leaderboard-table-dummy",
interactive=False,
visible=False
)
# Action after submitting a query to the search bar
search_bar.submit(
query_search,
[dummy_leaderboard_table, search_bar],
leaderboard_table,
queue=True
)
"""
####################### SECOND TAB - MULTIMODAL LEADERBOARD #######################
"""
with gr.TabItem(MULTIMODAL_NAME, elem_id="mm-llm-benchmark-tab-table", id=1):
with gr.Row():
mm_search_bar = gr.Textbox(
placeholder=" π Search for models - separate multiple queries with `;` and press ENTER...",
show_label=False,
elem_id="search-bar",
)
mm_leaderboard_table = gr.Dataframe(
value=multimodal_leaderboard,
elem_id="mm-leaderboard-table",
interactive=False,
visible=True,
height=dataframe_height
)
# Show information about the clemscore and last updated date below the table
gr.HTML(CLEMSCORE_TEXT)
gr.HTML(f"Last updated - {github_data['mm_date']}")
# Add a dummy leaderboard to handle search queries in leaderboard_table
# This will show a temporary leaderboard based on the searched value
mm_dummy_leaderboard_table = gr.Dataframe(
value=multimodal_leaderboard,
elem_id="mm-leaderboard-table-dummy",
interactive=False,
visible=False
)
# Action after submitting a query to the search bar
mm_search_bar.submit(
query_search,
[mm_dummy_leaderboard_table, mm_search_bar],
mm_leaderboard_table,
queue=True
)
"""
####################### THIRD TAB - PLOTS - %PLAYED V/S QUALITY SCORE #######################
"""
with gr.TabItem("π Plots", elem_id="plots", id=2):
"""
DropDown Select for Text/Multimodal Leaderboard
"""
leaderboard_selection = gr.Dropdown(
choices=[TEXT_NAME, MULTIMODAL_NAME],
value=TEXT_NAME,
label="Select Leaderboard ποΈπ½",
elem_id="value-select-0",
interactive=True
)
"""
Accordion Groups to select individual models - Hidden by default
"""
with gr.Accordion("Select Open-weight Models π", open=False):
open_models_selection = update_open_models()
clear_button_1 = gr.ClearButton(open_models_selection)
with gr.Accordion("Select Commercial Models π°", open=False):
closed_models_selection = update_closed_models()
clear_button_2 = gr.ClearButton(closed_models_selection)
"""
Checkbox group to control the layout of the plot
"""
with gr.Row():
with gr.Column():
show_all = gr.CheckboxGroup(
["Select All Models"],
label="Show plot for all models π€",
value=[],
elem_id="value-select-3",
interactive=True,
)
with gr.Column():
show_names = gr.CheckboxGroup(
["Show Names"],
label="Show names of models on the plot π·οΈ",
value=[],
elem_id="value-select-4",
interactive=True,
)
with gr.Column():
show_legend = gr.CheckboxGroup(
["Show Legend"],
label="Show legend on the plot π‘",
value=[],
elem_id="value-select-5",
interactive=True,
)
with gr.Column():
mobile_view = gr.CheckboxGroup(
["Mobile View"],
label="View plot on smaller screens π±",
value=[],
elem_id="value-select-6",
interactive=True,
)
"""
PLOT BLOCK
"""
# Create a dummy DataFrame as an input to the plotly_plot function.
# Uses this data to plot the %played v/s quality score
with gr.Row():
dummy_plot_df = gr.DataFrame(
value=get_plot_df(),
visible=False
)
with gr.Row():
with gr.Column():
# Output block for the plot
plot_output = gr.Plot()
"""
PLOT CHANGE ACTIONS
Toggle 'Select All Models' based on the values in Accordion checkbox groups
"""
open_models_selection.change(
plotly_plot,
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend,
mobile_view],
[plot_output],
queue=True
)
closed_models_selection.change(
plotly_plot,
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend,
mobile_view],
[plot_output],
queue=True
)
show_all.change(
plotly_plot,
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend,
mobile_view],
[plot_output],
queue=True
)
show_names.change(
plotly_plot,
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend,
mobile_view],
[plot_output],
queue=True
)
show_legend.change(
plotly_plot,
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend,
mobile_view],
[plot_output],
queue=True
)
mobile_view.change(
plotly_plot,
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend,
mobile_view],
[plot_output],
queue=True
)
"""
LEADERBOARD SELECT CHANGE ACTIONS
Update Checkbox Groups and Dummy DF based on the leaderboard selected
"""
leaderboard_selection.change(
update_open_models,
[leaderboard_selection],
[open_models_selection],
queue=True
)
leaderboard_selection.change(
update_closed_models,
[leaderboard_selection],
[closed_models_selection],
queue=True
)
leaderboard_selection.change(
get_plot_df,
[leaderboard_selection],
[dummy_plot_df],
queue=True
)
## Implement Feature - Reset Plot when Leaderboard selection changes
leaderboard_selection.change(
reset_show_all,
outputs=[show_all],
queue=True
)
open_models_selection.change(
reset_show_all,
outputs=[show_all],
queue=True
)
closed_models_selection.change(
reset_show_all,
outputs=[show_all],
queue=True
)
leaderboard_selection.change(
reset_show_names,
outputs=[show_names],
queue=True
)
leaderboard_selection.change(
reset_show_legend,
outputs=[show_legend],
queue=True
)
leaderboard_selection.change(
reset_mobile_view,
outputs=[mobile_view],
queue=True
)
"""
####################### FOURTH TAB - VERSIONS AND DETAILS #######################
"""
with gr.TabItem("π Versions and Details", elem_id="versions-details-tab", id=3):
with gr.Row():
version_select = gr.Dropdown(
version_names, label="Select Version πΉοΈ", value=latest_version
)
with gr.Row():
search_bar_prev = gr.Textbox(
placeholder=" π Search for models - separate multiple queries with `;` and press ENTER...",
show_label=False,
elem_id="search-bar-3",
)
prev_table = gr.Dataframe(
value=version_df,
elem_id="version-leaderboard-table",
interactive=False,
visible=True,
height=dataframe_height
)
dummy_prev_table = gr.Dataframe(
value=version_df,
elem_id="version-dummy-leaderboard-table",
interactive=False,
visible=False
)
gr.HTML(CLEMSCORE_TEXT)
gr.HTML(f"Last updated - {last_updated_date}")
search_bar_prev.submit(
query_search,
[dummy_prev_table, search_bar_prev],
prev_table,
queue=True
)
version_select.change(
select_version_df,
[version_select],
prev_table,
queue=True
)
# Update Dummy Leaderboard, when changing versions
version_select.change(
select_version_df,
[version_select],
dummy_prev_table,
queue=True
)
hf_app.load()
hf_app.queue()
# Add scheduler to auto-restart the HF space at every TIME interval and update every component each time
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, 'interval', seconds=TIME)
scheduler.start()
# Log current start time and scheduled restart time
print(datetime.now())
print(f"Scheduled restart at {datetime.now() + timedelta(seconds=TIME)}")
hf_app.launch()
|