File size: 10,303 Bytes
35378f6
 
923aff9
 
 
35378f6
923aff9
 
35378f6
923aff9
 
 
 
 
35378f6
 
 
923aff9
 
 
 
 
 
35378f6
923aff9
 
 
 
35378f6
 
 
 
 
 
 
923aff9
35378f6
 
 
 
923aff9
35378f6
923aff9
 
35378f6
 
 
923aff9
 
 
 
b345ff4
923aff9
35378f6
 
 
 
4f18cc8
35378f6
 
 
 
 
923aff9
69c36b6
 
923aff9
69c36b6
 
 
 
 
 
 
 
 
 
 
 
 
 
35378f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
923aff9
35378f6
 
 
923aff9
35378f6
923aff9
35378f6
 
 
 
 
 
923aff9
35378f6
 
 
 
 
 
 
 
 
 
 
923aff9
 
 
 
35378f6
923aff9
35378f6
923aff9
fa0181f
923aff9
 
 
 
 
 
 
 
 
fa0181f
 
 
 
923aff9
 
 
 
 
 
 
35378f6
 
923aff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import pandas as pd
import plotly.express as px
import requests
import json
import gradio as gr

from src.assets.text_content import SHORT_NAMES, TEXT_NAME, MULTIMODAL_NAME
from src.leaderboard_utils import get_github_data


def plotly_plot(df: pd.DataFrame, list_op: list, list_co: list,
                show_all: list, show_names: list, show_legend: list,
                mobile_view: list):
    """
    Takes in a list of models for a plotly plot
    Args:
        df: A dummy dataframe of latest version
        list_op: The list of open source models to show in the plot, updated from frontend
        list_co: The list of commercial models to show in the plot, updated from frontend
        show_all: Either [] or ["Show All Models"] - toggle view to plot all models 
        show_names: Either [] or ["Show Names"] - toggle view to show model names on plot 
        show_legend: Either [] or ["Show Legend"] - toggle view to show legend on plot
        mobile_view: Either [] or ["Mobile View"] - toggle view to for smaller screens
    Returns:
        Fig: plotly figure of % played v/s quality score
    """

    LIST = list_op + list_co
    # Get list of all models and append short names column to df
    list_columns = list(df.columns)
    ALL_LIST = list(df[list_columns[0]].unique())
    short_names = label_map(ALL_LIST)
    list_short_names = list(short_names.values())
    df["Short"] = list_short_names

    if show_all:
        LIST = ALL_LIST
    # Filter dataframe based on the provided list of models
    df = df[df[list_columns[0]].isin(LIST)]

    if show_names:
        fig = px.scatter(df, x=list_columns[2], y=list_columns[3], color=list_columns[0], symbol=list_columns[0],
                         color_discrete_map={"category1": "blue", "category2": "red"},
                         hover_name=list_columns[0], template="plotly_white", text="Short")
        fig.update_traces(textposition='top center')
    else:
        fig = px.scatter(df, x=list_columns[2], y=list_columns[3], color=list_columns[0], symbol=list_columns[0],
                         color_discrete_map={"category1": "blue", "category2": "red"},
                         hover_name=list_columns[0], template="plotly_white")

    if not show_legend:
        fig.update_layout(showlegend=False)

    fig.update_layout(
        xaxis_title='% Played',
        yaxis_title='Quality Score',
        title='Overview of benchmark results',
        height=1000
    )

    fig.update_xaxes(range=[-5, 105])
    fig.update_yaxes(range=[-5, 105])

    if mobile_view:
        fig.update_layout(height=300)

    if mobile_view and show_legend:
        fig.update_layout(height=450)
        fig.update_layout(legend=dict(
            yanchor="bottom",
            y=-5.52,
            xanchor="left",
            x=0.01
        ))

        fig.update_layout(
            xaxis_title="",
            yaxis_title="",
            title="% Played v/s Quality Score"
        )

    return fig


def shorten_model_name(full_name):
    # Split the name into parts
    parts = full_name.split('-')

    # Process the name parts to keep only the parts with digits (model sizes and versions)
    short_name_parts = [part for part in parts if any(char.isdigit() for char in part)]

    if len(parts) == 1:
        short_name = ''.join(full_name[0:min(3, len(full_name))])
    else:
        # Join the parts to form the short name
        short_name = '-'.join(short_name_parts)

        # Remove any leading or trailing hyphens
        short_name = full_name[0] + '-' + short_name.strip('-')

    return short_name


def label_map(model_list: list) -> dict:
    """
    Generate a map from long names to short names, to plot them in frontend graph
    Define the short names in src/assets/text_content.py
    Args: 
        model_list: A list of long model names
    Returns:
        short_name: A dict from long to short name
    """
    short_names = {}
    for model_name in model_list:
        if model_name in SHORT_NAMES:
            short_name = SHORT_NAMES[model_name]
        else:
            short_name = shorten_model_name(model_name)

        # Define the short name and indicate both models are same
        short_names[model_name] = short_name

    return short_names


def split_models(model_list: list):
    """
    Split the models into open source and commercial
    """
    open_models = []
    commercial_models = []
    
    # Load model registry data from main repo
    model_registry_url = "https://raw.githubusercontent.com/clp-research/clembench/main/backends/model_registry.json"
    response = requests.get(model_registry_url)

    if response.status_code == 200:
        json_data = json.loads(response.text)

        for model_name in model_list:
            for entry in json_data:
                if entry["model_name"] == model_name:
                    open_model = entry["open_weight"]
                    
                    if open_model:
                        open_models.append(model_name)
                    else:
                        commercial_models.append(model_name)
                    break

    else:
        print(f"Failed to read JSON file: Status Code : {response.status_code}")

    open_models.sort(key=lambda o: o.upper())
    commercial_models.sort(key=lambda c: c.upper())

    # Add missing model from the model_registry
    if "dolphin-2.5-mixtral-8x7b" in model_list:
        open_models.append("dolphin-2.5-mixtral-8x7b")

    return open_models, commercial_models

"""
Update Functions, for when the leaderboard selection changes
"""
def update_open_models(leaderboard: str = TEXT_NAME):
    """
    Change the checkbox group of Open Models based on the leaderboard selected

    Args:
        leaderboard: Selected leaderboard from the frontend [Default - Text Leaderboard]
    Return:
        Updated checkbox group for Open Models, based on the leaderboard selected
    """
    github_data = get_github_data()
    leaderboard_data = github_data["text" if leaderboard == TEXT_NAME else "multimodal"][0]
    models = leaderboard_data.iloc[:, 0].unique().tolist()
    open_models, commercial_models = split_models(models)
    return gr.CheckboxGroup(
        open_models,
        value=[],
        elem_id="value-select-1",
        interactive=True,
    )

def update_closed_models(leaderboard: str = TEXT_NAME):
    """
    Change the checkbox group of Closed Models based on the leaderboard selected

    Args:
        leaderboard: Selected leaderboard from the frontend [Default - Text Leaderboard]
    Return:
        Updated checkbox group for Closed Models, based on the leaderboard selected
    """
    github_data = get_github_data()
    leaderboard_data = github_data["text" if leaderboard == TEXT_NAME else "multimodal"][0]
    models = leaderboard_data.iloc[:, 0].unique().tolist()
    open_models, commercial_models = split_models(models)
    return gr.CheckboxGroup(
        commercial_models,
        value=[],
        elem_id="value-select-2",
        interactive=True,
    )

def get_plot_df(leaderboard: str = TEXT_NAME) -> pd.DataFrame:
    """
    Get the DataFrame for plotting based on the selected leaderboard.
    Args:
        leaderboard: Selected leaderboard.
    Returns:
        DataFrame with model data.
    """
    github_data = get_github_data()
    return github_data["text" if leaderboard == TEXT_NAME else "multimodal"][0]


"""
Reset Functions for when the Leaderboard selection changes
"""
def reset_show_all():
    return gr.CheckboxGroup(
            ["Select All Models"],
            label="Show plot for all models πŸ€–",
            value=[],
            elem_id="value-select-3",
            interactive=True,
        )

def reset_show_names():
    return gr.CheckboxGroup(
        ["Show Names"],
        label="Show names of models on the plot 🏷️",
        value=[],
        elem_id="value-select-4",
        interactive=True,
    )


def reset_show_legend():
    return gr.CheckboxGroup(
        ["Show Legend"],
        label="Show legend on the plot πŸ’‘",
        value=[],
        elem_id="value-select-5",
        interactive=True,
    )


def reset_mobile_view():
    return gr.CheckboxGroup(
        ["Mobile View"],
        label="View plot on smaller screens πŸ“±",
        value=[],
        elem_id="value-select-6",
        interactive=True,
    )


if __name__ == '__main__':
    mm_model_list = ['gpt-4o-2024-05-13', 'gpt-4-1106-vision-preview', 'claude-3-opus-20240229', 'gemini-1.5-pro-latest',
                     'gemini-1.5-flash-latest', 'llava-v1.6-34b-hf', 'llava-v1.6-vicuna-13b-hf', 'idefics-80b-instruct',
                     'llava-1.5-13b-hf', 'idefics-9b-instruct']

    text_model_list = ['vicuna-33b-v1.3', 'gpt-4-0125-preview', 'gpt-4-turbo-2024-04-09', 'claude-3-5-sonnet-20240620', 'gpt-4-1106-preview',
                         'gpt-4-0613', 'gpt-4o-2024-05-13', 'claude-3-opus-20240229', 'gemini-1.5-pro-latest',
                         'Meta-Llama-3-70B-Instruct-hf', 'claude-2.1', 'gemini-1.5-flash-latest', 'claude-3-sonnet-20240229',
                         'Qwen1.5-72B-Chat', 'mistral-large-2402', 'gpt-3.5-turbo-0125', 'gemini-1.0-pro', 'command-r-plus', 'openchat_3.5',
                         'claude-3-haiku-20240307', 'sheep-duck-llama-2-70b-v1.1', 'Meta-Llama-3-8B-Instruct-hf', 'openchat-3.5-1210',
                         'WizardLM-70b-v1.0', 'openchat-3.5-0106', 'Qwen1.5-14B-Chat', 'mistral-medium-2312', 'Qwen1.5-32B-Chat',
                         'codegemma-7b-it', 'dolphin-2.5-mixtral-8x7b', 'CodeLlama-34b-Instruct-hf', 'command-r', 'gemma-1.1-7b-it',
                         'SUS-Chat-34B', 'Mixtral-8x22B-Instruct-v0.1', 'tulu-2-dpo-70b', 'Nous-Hermes-2-Mixtral-8x7B-SFT',
                         'WizardLM-13b-v1.2', 'Mistral-7B-Instruct-v0.2', 'Yi-34B-Chat', 'Mixtral-8x7B-Instruct-v0.1',
                         'Mistral-7B-Instruct-v0.1', 'Yi-1.5-34B-Chat', 'vicuna-13b-v1.5', 'Yi-1.5-6B-Chat', 'Starling-LM-7B-beta',
                         'sheep-duck-llama-2-13b', 'Yi-1.5-9B-Chat', 'gemma-1.1-2b-it', 'Qwen1.5-7B-Chat', 'gemma-7b-it',
                         'llama-2-70b-chat-hf', 'Qwen1.5-0.5B-Chat', 'Qwen1.5-1.8B-Chat']

    om, cm = split_models(mm_model_list)
    print("Open")
    print(om)
    print("Closed")
    print(cm)