Spaces:
Running
Running
import os | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from src.assets.text_content import SHORT_NAMES | |
def update_cols(df: pd.DataFrame) -> pd.DataFrame: | |
''' | |
Change three header rows to a single header row | |
Args: | |
df: Raw dataframe containing 3 separate header rows | |
Remove this function if the dataframe has only one header row | |
Returns: | |
df: Updated dataframe which has only 1 header row instead of 3 | |
''' | |
default_cols = list(df.columns) | |
# First 4 columns are initalised in 'update', Append additional columns for games Model, Clemscore, ALL(PLayed) and ALL(Main Score) | |
update = ['Model', 'Clemscore', 'All(Played)', 'All(Quality Score)'] | |
game_metrics = default_cols[4:] | |
# Change columns Names for each Game | |
for i in range(len(game_metrics)): | |
if i%3 == 0: | |
game = game_metrics[i] | |
update.append(str(game).capitalize() + "(Played)") | |
update.append(str(game).capitalize() + "(Quality Score)") | |
update.append(str(game).capitalize() + "(Quality Score[std])") | |
# Create a dict to change names of the columns | |
map_cols = {} | |
for i in range(len(default_cols)): | |
map_cols[default_cols[i]] = str(update[i]) | |
df = df.rename(columns=map_cols) | |
df = df.iloc[2:] | |
return df | |
def process_df(df: pd.DataFrame) -> pd.DataFrame: | |
''' | |
Process dataframe - Remove repition in model names, convert datatypes to sort by "float" instead of "str" | |
Args: | |
df: Unprocessed Dataframe (after using update_cols) | |
Returns: | |
df: Processed Dataframe | |
''' | |
# Change column type to float from str | |
list_column_names = list(df.columns) | |
model_col_name = list_column_names[0] | |
for col in list_column_names: | |
if col != model_col_name: | |
df[col] = df[col].astype(float) | |
# Remove repetition in model names, if any | |
models_list = [] | |
for i in range(len(df)): | |
model_name = df.iloc[i][model_col_name] | |
splits = model_name.split('--') | |
splits = [split.replace('-t0.0', '') for split in splits] # Comment to not remove -t0.0 | |
if splits[0] == splits[1]: | |
models_list.append(splits[0]) | |
else: | |
models_list.append(splits[0] + "--" + splits[1]) | |
df[model_col_name] = models_list | |
return df | |
def get_data(path: str, flag: bool): | |
''' | |
Get a list of all version names and respective Dataframes | |
Args: | |
path: Path to the directory containing CSVs of different versions -> v0.9.csv, v1.0.csv, .... | |
flag: Set this flag to include the latest version in Details and Versions tab | |
Returns: | |
latest_df: singular list containing dataframe of the latest version of the leaderboard with only 4 columns | |
latest_vname: list of the name of latest version | |
previous_df: list of dataframes for previous versions (can skip latest version if required) | |
previous_vname: list of the names for the previous versions (INCLUDED IN Details and Versions Tab) | |
''' | |
# Check if Directory is empty | |
list_versions = os.listdir(path) | |
if not list_versions: | |
print("Directory is empty") | |
else: | |
files = [file for file in list_versions if file.endswith('.csv')] | |
files.sort(reverse=True) | |
file_names = [os.path.splitext(file)[0] for file in files] | |
DFS = [] | |
for file in files: | |
df = pd.read_csv(os.path.join(path, file)) | |
df = update_cols(df) # Remove if by default there is only one header row | |
df = process_df(df) # Process Dataframe | |
df = df.sort_values(by=list(df.columns)[1], ascending=False) # Sort by clemscore | |
DFS.append(df) | |
# Only keep relavant columns for the main leaderboard | |
latest_df_dummy = DFS[0] | |
all_columns = list(latest_df_dummy.columns) | |
keep_columns = all_columns[0:4] | |
latest_df_dummy = latest_df_dummy.drop(columns=[c for c in all_columns if c not in keep_columns]) | |
latest_df = [latest_df_dummy] | |
latest_vname = [file_names[0]] | |
previous_df = [] | |
previous_vname = [] | |
for df, name in zip(DFS, file_names): | |
previous_df.append(df) | |
previous_vname.append(name) | |
if not flag: | |
previous_df.pop(0) | |
previous_vname.pop(0) | |
return latest_df, latest_vname, previous_df, previous_vname | |
return None | |
# ['Model', 'Clemscore', 'All(Played)', 'All(Quality Score)'] | |
def compare_plots(df: pd.DataFrame, LIST: list): | |
''' | |
Quality Score v/s % Played plot by selecting models | |
Args: | |
LIST: The list of models to show in the plot, updated from frontend | |
Returns: | |
fig: The plot | |
''' | |
short_names = label_map(LIST) | |
list_columns = list(df.columns) | |
df = df[df[list_columns[0]].isin(LIST)] | |
X = df[list_columns[2]] | |
fig, ax = plt.subplots() | |
for model in LIST: | |
short = short_names[model][0] | |
same_flag = short_names[model][1] | |
model_df = df[df[list_columns[0]] == model] | |
x = model_df[list_columns[2]] | |
y = model_df[list_columns[3]] | |
color = plt.cm.rainbow(x / max(X)) # Use a colormap for different colors | |
plt.scatter(x, y, color=color) | |
if same_flag: | |
plt.annotate(f'{short}', (x, y), textcoords="offset points", xytext=(0, -15), ha='center', rotation=0) | |
else: | |
plt.annotate(f'{short}', (x, y), textcoords="offset points", xytext=(20, -3), ha='center', rotation=0) | |
ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2) | |
ax.set_xticks(np.arange(0,110,10)) | |
plt.xlim(-10, 110) | |
plt.ylim(-10, 110) | |
plt.xlabel('% Played') | |
plt.ylabel('Quality Score') | |
plt.title('Overview of benchmark results') | |
plt.show() | |
return fig | |
def label_map(model_list: list) -> dict: | |
''' | |
Generate a map from long names to short names, to plot them in frontend graph | |
Define the short names in src/assets/text_content.py | |
Args: | |
model_list: A list of long model names | |
Returns: | |
short_name: A map from long to list of short name + indication if models are same or different | |
''' | |
short_name = {} | |
for model_name in model_list: | |
splits = model_name.split('--') | |
if len(splits) != 1: | |
splits[0] = SHORT_NAMES[splits[0] + '-'] | |
splits[1] = SHORT_NAMES[splits[1] + '-'] | |
# Define the short name and indicate there are two different models | |
short_name[model_name] = [splits[0] + '--' + splits[1], 0] | |
else: | |
splits[0] = SHORT_NAMES[splits[0] + '-'] | |
# Define the short name and indicate both models are same | |
short_name[model_name] = [splits[0], 1] | |
return short_name | |
def filter_search(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
''' | |
Filter the dataframe based on the search query | |
Args: | |
df: Unfiltered dataframe | |
query: a string of queries separated by ";" | |
Return: | |
filtered_df: Dataframe containing searched queries in the 'Model' column | |
''' | |
queries = query.split(';') | |
list_cols = list(df.columns) | |
df_len = len(df) | |
filtered_models = [] | |
models_list = list(df[list_cols[0]]) | |
for q in queries: | |
q = q.lower() | |
for i in range(df_len): | |
model_name = models_list[i] | |
if q in model_name.lower(): | |
filtered_models.append(model_name) # Append model names containing query q | |
filtered_df = df[df[list_cols[0]].isin(filtered_models)] | |
if query == "": | |
return df | |
return filtered_df | |