File size: 5,274 Bytes
35378f6 69c36b6 35378f6 b345ff4 69c36b6 35378f6 b345ff4 35378f6 4f18cc8 35378f6 69c36b6 35378f6 69c36b6 35378f6 b345ff4 69c36b6 35378f6 69c36b6 35378f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import pandas as pd
import plotly.express as px
from src.assets.text_content import SHORT_NAMES
def plotly_plot(df:pd.DataFrame, LIST:list, ALL:list, NAMES:list, LEGEND:list, MOBILE:list ):
'''
Takes in a list of models for a plotly plot
Args:
df: A dummy dataframe of latest version
LIST: List of models to plot
ALL: Either [] or ["Show All Models"] - toggle view to plot all models
NAMES: Either [] or ["Show Names"] - toggle view to show model names on plot
LEGEND: Either [] or ["Show Legend"] - toggle view to show legend on plot
MOBILE: Either [] or ["Mobile View"] - toggle view to for smaller screens
Returns:
Fig: plotly figure
'''
# Get list of all models and append short names column to df
list_columns = list(df.columns)
ALL_LIST = list(df[list_columns[0]].unique())
short_names = label_map(ALL_LIST)
list_short_names = list(short_names.values())
df["Short"] = list_short_names
if ALL:
LIST = ALL_LIST
# Filter dataframe based on the provided list of models
df = df[df[list_columns[0]].isin(LIST)]
if NAMES:
fig = px.scatter(df, x=list_columns[2], y=list_columns[3], color=list_columns[0], symbol=list_columns[0],
color_discrete_map={"category1": "blue", "category2": "red"},
hover_name=list_columns[0], template="plotly_white", text="Short")
fig.update_traces(textposition='top center')
else:
fig = px.scatter(df, x=list_columns[2], y=list_columns[3], color=list_columns[0], symbol=list_columns[0],
color_discrete_map={"category1": "blue", "category2": "red"},
hover_name=list_columns[0], template="plotly_white")
if not LEGEND:
fig.update_layout(showlegend=False)
fig.update_layout(
xaxis_title='% Played',
yaxis_title='Quality Score',
title='Overview of benchmark results',
height=1000
)
fig.update_xaxes(range=[-5, 105])
fig.update_yaxes(range=[-5, 105])
if MOBILE:
fig.update_layout(height=300)
if MOBILE and LEGEND:
fig.update_layout(height=450)
fig.update_layout(legend=dict(
yanchor="bottom",
y=-5.52,
xanchor="left",
x=0.01
))
fig.update_layout(
xaxis_title="",
yaxis_title="",
title="% Played v/s Quality Score"
)
return fig
# ['Model', 'Clemscore', 'All(Played)', 'All(Quality Score)']
def compare_plots(df: pd.DataFrame, LIST1: list, LIST2: list, ALL:list, NAMES:list, LEGEND: list, MOBILE: list):
'''
Quality Score v/s % Played plot by selecting models
Args:
df: A dummy dataframe of latest version
LIST1: The list of open source models to show in the plot, updated from frontend
LIST2: The list of commercial models to show in the plot, updated from frontend
ALL: Either [] or ["Show All Models"] - toggle view to plot all models
NAMES: Either [] or ["Show Names"] - toggle view to show model names on plot
LEGEND: Either [] or ["Show Legend"] - toggle view to show legend on plot
MOBILE: Either [] or ["Mobile View"] - toggle view to for smaller screens
Returns:
fig: The plot
'''
# Combine lists for Open source and commercial models
LIST = LIST1 + LIST2
fig = plotly_plot(df, LIST, ALL, NAMES, LEGEND, MOBILE)
return fig
def shorten_model_name(full_name):
# Split the name into parts
parts = full_name.split('-')
# Process the name parts to keep only the parts with digits (model sizes and versions)
short_name_parts = [part for part in parts if any(char.isdigit() for char in part)]
if len(parts) == 1:
short_name = ''.join(full_name[0:min(3, len(full_name))])
else:
# Join the parts to form the short name
short_name = '-'.join(short_name_parts)
# Remove any leading or trailing hyphens
short_name = full_name[0] + '-'+ short_name.strip('-')
return short_name
def label_map(model_list: list) -> dict:
'''
Generate a map from long names to short names, to plot them in frontend graph
Define the short names in src/assets/text_content.py
Args:
model_list: A list of long model names
Returns:
short_name: A dict from long to short name
'''
short_names = {}
for model_name in model_list:
if model_name in SHORT_NAMES:
short_name = SHORT_NAMES[model_name]
else:
short_name = shorten_model_name(model_name)
# Define the short name and indicate both models are same
short_names[model_name] = short_name
return short_names
def split_models(MODEL_LIST: list):
'''
Split the models into open source and commercial
'''
open_models = []
comm_models = []
for model in MODEL_LIST:
if model.startswith(('gpt-', 'claude-', 'command')):
comm_models.append(model)
else:
open_models.append(model)
open_models.sort(key=lambda o: o.upper())
comm_models.sort(key=lambda c: c.upper())
return open_models, comm_models
|