File size: 8,409 Bytes
e16fd64 d12b8ee e16fd64 250513d e16fd64 250513d e16fd64 250513d e16fd64 250513d e16fd64 250513d e16fd64 250513d e16fd64 250513d e16fd64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from src.assets.text_content import SHORT_NAMES
def update_cols(df: pd.DataFrame) -> pd.DataFrame:
'''
Change three header rows to a single header row
Args:
df: Raw dataframe containing 3 separate header rows
Remove this function if the dataframe has only one header row
Returns:
df: Updated dataframe which has only 1 header row instead of 3
'''
default_cols = list(df.columns)
# First 4 columns are initalised in 'update', Append additional columns for games Model, Clemscore, ALL(PLayed) and ALL(Main Score)
update = ['Model', 'Clemscore', 'Played', 'Quality Score']
game_metrics = default_cols[4:]
# Change columns Names for each Game
for i in range(len(game_metrics)):
if i%3 == 0:
game = game_metrics[i]
update.append(str(game).capitalize() + "(Played)")
update.append(str(game).capitalize() + "(Quality Score)")
update.append(str(game).capitalize() + "(Quality Score[std])")
# Create a dict to change names of the columns
map_cols = {}
for i in range(len(default_cols)):
map_cols[default_cols[i]] = str(update[i])
df = df.rename(columns=map_cols)
df = df.iloc[2:]
return df
def process_df(df: pd.DataFrame) -> pd.DataFrame:
'''
Process dataframe - Remove repition in model names, convert datatypes to sort by "float" instead of "str"
Args:
df: Unprocessed Dataframe (after using update_cols)
Returns:
df: Processed Dataframe
'''
# Change column type to float from str
list_column_names = list(df.columns)
model_col_name = list_column_names[0]
for col in list_column_names:
if col != model_col_name:
df[col] = df[col].astype(float)
# Remove repetition in model names, if any
models_list = []
for i in range(len(df)):
model_name = df.iloc[i][model_col_name]
splits = model_name.split('--')
splits = [split.replace('-t0.0', '') for split in splits] # Comment to not remove -t0.0
if splits[0] == splits[1]:
models_list.append(splits[0])
else:
models_list.append(splits[0] + "--" + splits[1])
df[model_col_name] = models_list
return df
def get_data(path: str, flag: bool):
'''
Get a list of all version names and respective Dataframes
Args:
path: Path to the directory containing CSVs of different versions -> v0.9.csv, v1.0.csv, ....
flag: Set this flag to include the latest version in Details and Versions tab
Returns:
latest_df: singular list containing dataframe of the latest version of the leaderboard with only 4 columns
latest_vname: list of the name of latest version
previous_df: list of dataframes for previous versions (can skip latest version if required)
previous_vname: list of the names for the previous versions (INCLUDED IN Details and Versions Tab)
'''
# Check if Directory is empty
list_versions = os.listdir(path)
if not list_versions:
print("Directory is empty")
else:
files = [file for file in list_versions if file.endswith('.csv')]
files.sort(reverse=True)
file_names = [os.path.splitext(file)[0] for file in files]
DFS = []
for file in files:
df = pd.read_csv(os.path.join(path, file))
df = update_cols(df) # Remove if by default there is only one header row
df = process_df(df) # Process Dataframe
df = df.sort_values(by=list(df.columns)[1], ascending=False) # Sort by clemscore
DFS.append(df)
# Only keep relavant columns for the main leaderboard
latest_df_dummy = DFS[0]
all_columns = list(latest_df_dummy.columns)
keep_columns = all_columns[0:4]
latest_df_dummy = latest_df_dummy.drop(columns=[c for c in all_columns if c not in keep_columns])
latest_df = [latest_df_dummy]
latest_vname = [file_names[0]]
previous_df = []
previous_vname = []
for df, name in zip(DFS, file_names):
previous_df.append(df)
previous_vname.append(name)
if not flag:
previous_df.pop(0)
previous_vname.pop(0)
return latest_df, latest_vname, previous_df, previous_vname
return None
# ['Model', 'Clemscore', 'All(Played)', 'All(Quality Score)']
def compare_plots(df: pd.DataFrame, LIST: list):
'''
Quality Score v/s % Played plot by selecting models
Args:
LIST: The list of models to show in the plot, updated from frontend
Returns:
fig: The plot
'''
short_names = label_map(LIST)
list_columns = list(df.columns)
df = df[df[list_columns[0]].isin(LIST)]
X = df[list_columns[2]]
fig, ax = plt.subplots()
for model in LIST:
short = short_names[model]
# same_flag = short_names[model][1]
model_df = df[df[list_columns[0]] == model]
x = model_df[list_columns[2]]
y = model_df[list_columns[3]]
color = plt.cm.rainbow(x / max(X)) # Use a colormap for different colors
plt.scatter(x, y, color=color)
# if same_flag:
plt.annotate(f'{short}', (x, y), textcoords="offset points", xytext=(0, -15), ha='center', rotation=0)
# else:
# plt.annotate(f'{short}', (x, y), textcoords="offset points", xytext=(20, -3), ha='center', rotation=0)
ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2)
ax.set_xticks(np.arange(0,110,10))
plt.xlim(-10, 110)
plt.ylim(-10, 110)
plt.xlabel('% Played')
plt.ylabel('Quality Score')
plt.title('Overview of benchmark results')
plt.show()
return fig
def shorten_model_name(full_name):
# Split the name into parts
parts = full_name.split('-')
# Process the name parts to keep only the parts with digits (model sizes and versions)
short_name_parts = [part for part in parts if any(char.isdigit() for char in part)]
if len(parts) == 1:
short_name = ''.join(full_name[0:min(3, len(full_name))])
else:
# Join the parts to form the short name
short_name = '-'.join(short_name_parts)
# Remove any leading or trailing hyphens
short_name = full_name[0] + '-'+ short_name.strip('-')
return short_name
def label_map(model_list: list) -> dict:
'''
Generate a map from long names to short names, to plot them in frontend graph
Define the short names in src/assets/text_content.py
Args:
model_list: A list of long model names
Returns:
short_name: A map from long to list of short name + indication if models are same or different
'''
short_names = {}
for model_name in model_list:
# splits = model_name.split('--')
# if len(splits) != 1:
# splits[0] = SHORT_NAMES[splits[0] + '-']
# splits[1] = SHORT_NAMES[splits[1] + '-']
# # Define the short name and indicate there are two different models
# short_names[model_name] = [splits[0] + '--' + splits[1], 0]
# else:
if model_name in SHORT_NAMES:
short_name = SHORT_NAMES[model_name]
else:
short_name = shorten_model_name(model_name)
# Define the short name and indicate both models are same
short_names[model_name] = short_name
return short_names
def filter_search(df: pd.DataFrame, query: str) -> pd.DataFrame:
'''
Filter the dataframe based on the search query
Args:
df: Unfiltered dataframe
query: a string of queries separated by ";"
Return:
filtered_df: Dataframe containing searched queries in the 'Model' column
'''
queries = query.split(';')
list_cols = list(df.columns)
df_len = len(df)
filtered_models = []
models_list = list(df[list_cols[0]])
for q in queries:
q = q.lower()
for i in range(df_len):
model_name = models_list[i]
if q in model_name.lower():
filtered_models.append(model_name) # Append model names containing query q
filtered_df = df[df[list_cols[0]].isin(filtered_models)]
if query == "":
return df
return filtered_df
|