Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import HfApi | |
from datetime import datetime, timedelta | |
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CLEMSCORE_TEXT, MULTIMODAL_NAME, TEXT_NAME, HF_REPO | |
from src.leaderboard_utils import query_search, get_github_data | |
from src.plot_utils import split_models, plotly_plot, get_plot_df, update_open_models, update_closed_models | |
from src.plot_utils import reset_show_all, reset_show_names, reset_show_legend, reset_mobile_view | |
from src.version_utils import get_version_data | |
from src.trend_utils import get_final_trend_plot | |
""" | |
CONSTANTS | |
""" | |
# For restarting the gradio application every 24 Hrs | |
TIME = 43200 # in seconds # Reload will not work locally - requires HFToken # The app launches locally as expected - only without the reload utility | |
""" | |
AUTO RESTART HF SPACE | |
""" | |
HF_TOKEN = os.environ.get("H4_TOKEN", None) | |
api = HfApi() | |
def restart_space(): | |
api.restart_space(repo_id=HF_REPO, token=HF_TOKEN) | |
""" | |
GITHUB UTILS | |
""" | |
github_data = get_github_data() | |
multimodal_leaderboard = github_data["multimodal"]["dataframes"][0] # Get the latest version of multimodal leaderboard | |
# Show only First 4 columns for the leaderboard | |
# Should be Model Name, Clemscore, %Played, and Quality Score | |
multimodal_leaderboard = multimodal_leaderboard.iloc[:, :4] | |
""" | |
VERSIONS UTILS | |
""" | |
versions_data = get_version_data() | |
latest_version = versions_data['versions'][0]['name'] | |
last_updated_date = versions_data['versions'][0]['last_updated'][0] | |
version_names = [v['name'] for v in versions_data['versions']] | |
global version_df | |
version_df = versions_data['dataframes'][0] | |
def select_version_df(name): | |
for i, v in enumerate(versions_data['versions']): | |
if v['name'] == name: | |
return versions_data['dataframes'][i] | |
""" | |
MAIN APPLICATION | |
""" | |
hf_app = gr.Blocks() | |
with hf_app: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
""" | |
####################### FIRST TAB - MULTIMODAL LEADERBOARD ####################### | |
""" | |
with gr.TabItem(MULTIMODAL_NAME, elem_id="mm-llm-benchmark-tab-table", id=1): | |
with gr.Row(): | |
mm_search_bar = gr.Textbox( | |
placeholder=" π Search for models - separate multiple queries with `;` and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
mm_leaderboard_table = gr.Dataframe( | |
value=multimodal_leaderboard, | |
elem_id="mm-leaderboard-table", | |
interactive=False, | |
visible=True | |
) | |
# Show information about the clemscore and last updated date below the table | |
gr.HTML(CLEMSCORE_TEXT) | |
gr.HTML(f"Last updated - {github_data['multimodal']['version_data'][0]['last_updated'][0]}") | |
# Add a dummy leaderboard to handle search queries in leaderboard_table | |
# This will show a temporary leaderboard based on the searched value | |
mm_dummy_leaderboard_table = gr.Dataframe( | |
value=multimodal_leaderboard, | |
elem_id="mm-leaderboard-table-dummy", | |
interactive=False, | |
visible=False | |
) | |
# Action after submitting a query to the search bar | |
mm_search_bar.submit( | |
query_search, | |
[mm_dummy_leaderboard_table, mm_search_bar], | |
mm_leaderboard_table, | |
queue=True | |
) | |
""" | |
####################### SECOND TAB - PLOTS - %PLAYED V/S QUALITY SCORE ####################### | |
""" | |
with gr.TabItem("π Plots", elem_id="plots", id=2): | |
""" | |
Accordion Groups to select individual models - Hidden by default | |
""" | |
with gr.Accordion("Select Open-weight Models π", open=False): | |
open_models_selection = update_open_models() | |
clear_button_1 = gr.ClearButton(open_models_selection) | |
with gr.Accordion("Select Commercial Models π°", open=False): | |
closed_models_selection = update_closed_models() | |
clear_button_2 = gr.ClearButton(closed_models_selection) | |
""" | |
Checkbox group to control the layout of the plot | |
""" | |
with gr.Row(): | |
with gr.Column(): | |
show_all = gr.CheckboxGroup( | |
["Select All Models"], | |
label="Show plot for all models π€", | |
value=[], | |
elem_id="value-select-3", | |
interactive=True, | |
) | |
with gr.Column(): | |
show_names = gr.CheckboxGroup( | |
["Show Names"], | |
label="Show names of models on the plot π·οΈ", | |
value=[], | |
elem_id="value-select-4", | |
interactive=True, | |
) | |
with gr.Column(): | |
show_legend = gr.CheckboxGroup( | |
["Show Legend"], | |
label="Show legend on the plot π‘", | |
value=[], | |
elem_id="value-select-5", | |
interactive=True, | |
) | |
with gr.Column(): | |
mobile_view = gr.CheckboxGroup( | |
["Mobile View"], | |
label="View plot on smaller screens π±", | |
value=[], | |
elem_id="value-select-6", | |
interactive=True, | |
) | |
""" | |
PLOT BLOCK | |
""" | |
# Create a dummy DataFrame as an input to the plotly_plot function. | |
# Uses this data to plot the %played v/s quality score | |
with gr.Row(): | |
dummy_plot_df = gr.DataFrame( | |
value=get_plot_df(), | |
visible=False | |
) | |
with gr.Row(): | |
with gr.Column(): | |
# Output block for the plot | |
plot_output = gr.Plot() | |
""" | |
PLOT CHANGE ACTIONS | |
Toggle 'Select All Models' based on the values in Accordion checkbox groups | |
""" | |
open_models_selection.change( | |
plotly_plot, | |
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend, | |
mobile_view], | |
[plot_output], | |
queue=True | |
) | |
closed_models_selection.change( | |
plotly_plot, | |
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend, | |
mobile_view], | |
[plot_output], | |
queue=True | |
) | |
show_all.change( | |
plotly_plot, | |
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend, | |
mobile_view], | |
[plot_output], | |
queue=True | |
) | |
show_names.change( | |
plotly_plot, | |
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend, | |
mobile_view], | |
[plot_output], | |
queue=True | |
) | |
show_legend.change( | |
plotly_plot, | |
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend, | |
mobile_view], | |
[plot_output], | |
queue=True | |
) | |
mobile_view.change( | |
plotly_plot, | |
[dummy_plot_df, open_models_selection, closed_models_selection, show_all, show_names, show_legend, | |
mobile_view], | |
[plot_output], | |
queue=True | |
) | |
open_models_selection.change( | |
reset_show_all, | |
outputs=[show_all], | |
queue=True | |
) | |
closed_models_selection.change( | |
reset_show_all, | |
outputs=[show_all], | |
queue=True | |
) | |
""" | |
####################### THIRD TAB - TRENDS ####################### | |
""" | |
with gr.TabItem("πTrends", elem_id="trends-tab", id=3): | |
with gr.Row(): | |
mkd_text = gr.Markdown("### Commercial v/s Open-Weight models - clemscore over time. The size of the circles represents the scaled value of the parameters of the models. Larger circles indicate higher parameter values.") | |
with gr.Row(): | |
trend_plot = gr.Plot(get_final_trend_plot(False, 1200), show_label=False) | |
with gr.Row(): | |
mobile_view = gr.CheckboxGroup( | |
choices=["Mobile View"], | |
value=[], | |
label="View plot on smaller screens π±", | |
elem_id="value-select-8", | |
interactive=True, | |
) | |
mobile_view.change( | |
get_final_trend_plot, | |
[mobile_view], | |
[trend_plot], | |
queue=True | |
) | |
""" | |
####################### FOURTH TAB - VERSIONS AND DETAILS ####################### | |
""" | |
with gr.TabItem("π Versions and Details", elem_id="versions-details-tab", id=4): | |
with gr.Row(): | |
version_select = gr.Dropdown( | |
version_names, label="Select Version πΉοΈ", value=latest_version | |
) | |
with gr.Row(): | |
search_bar_prev = gr.Textbox( | |
placeholder=" π Search for models - separate multiple queries with `;` and press ENTER...", | |
show_label=False, | |
elem_id="search-bar-3", | |
) | |
prev_table = gr.Dataframe( | |
value=version_df, | |
elem_id="version-leaderboard-table", | |
interactive=False, | |
visible=True | |
) | |
dummy_prev_table = gr.Dataframe( | |
value=version_df, | |
elem_id="version-dummy-leaderboard-table", | |
interactive=False, | |
visible=False | |
) | |
gr.HTML(CLEMSCORE_TEXT) | |
gr.HTML(f"Last updated - {last_updated_date}") | |
search_bar_prev.submit( | |
query_search, | |
[dummy_prev_table, search_bar_prev], | |
prev_table, | |
queue=True | |
) | |
version_select.change( | |
select_version_df, | |
[version_select], | |
prev_table, | |
queue=True | |
) | |
# Update Dummy Leaderboard, when changing versions | |
version_select.change( | |
select_version_df, | |
[version_select], | |
dummy_prev_table, | |
queue=True | |
) | |
hf_app.load() | |
hf_app.queue() | |
# Add scheduler to auto-restart the HF space at every TIME interval and update every component each time | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, 'interval', seconds=TIME) | |
scheduler.start() | |
# Log current start time and scheduled restart time | |
print(datetime.now()) | |
print(f"Scheduled restart at {datetime.now() + timedelta(seconds=TIME)}") | |
hf_app.launch() | |