File size: 5,814 Bytes
33d9042
 
a68da21
33d9042
a68da21
33d9042
a68da21
 
e8d0c6b
33d9042
30d1141
85d5a02
30d1141
 
 
c4d7f81
30d1141
c4d7f81
30d1141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33d9042
 
94d2571
 
a68da21
 
 
 
 
 
 
94d2571
d29782d
c4d7f81
f7b03d4
 
 
 
 
 
 
 
c4d7f81
540a7bb
a68da21
 
 
 
 
 
 
 
 
 
 
 
 
 
c4d7f81
 
4c8a999
a68da21
4c8a999
a68da21
4743f10
a68da21
 
 
 
c4d7f81
33d9042
 
a68da21
 
 
 
 
 
 
a479a3f
a68da21
 
 
 
 
 
 
 
94d2571
a68da21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import spaces
import gradio as gr
import io
import os
import re
import torch
import torchaudio
from pathlib import Path
from whisperspeech.pipeline import Pipeline

title = """# 🙋🏻‍♂️ Welcome to Collabora's WhisperSpeech

WhisperSpeech is an Open Source text-to-speech system built by Collabora and LAION by inverting Whisper.
The model is fully open and you can run it on your local hardware. It's like **Stable Diffusion but for speech**
– both powerful and easily customizable.

To use it locally:

```
pip install -U WhisperSpeech
```

and later:

```
from whisperspeech.pipeline import Pipeline

pipe = Pipeline(torch_compile=True)
pipe.generate_to_file("output.wav", "Hello from WhisperSpeech.")
```

[Contribute to WhisperSpeech on ![Static Badge](https://img.shields.io/badge/GitHub-blue)](https://github.com/collabora/WhisperSpeech)
or join discussion on [![](https://dcbadge.vercel.app/api/server/FANw4rHD5E)](https://discord.gg/FANw4rHD5E) or on
[![Static Badge](https://img.shields.io/badge/GitHub-Discussions-green)](https://github.com/collabora/WhisperSpeech/discussions).

Huge thanks to [Tonic](https://huggingface.co/Tonic) who helped build this Space for WhisperSpeech.

### How to Use It

Write you text in the box, you can use language tags (`<en>` or `<pl>`) to create multilingual speech.
Optionally you can upload a speech sample or give it a file URL to clone an existing voice. Check out the
examples at the bottom of the page for inspiration.
"""


text_examples = [
    ["This is the first demo of Whisper Speech, a fully open source text-to-speech model trained by Collabora and Lion on the Juwels supercomputer.", None],
    ["World War II or the Second World War was a global conflict that lasted from 1939 to 1945. The vast majority of the world's countries, including all the great powers, fought as part of two opposing military alliances: the Allies and the Axis.", "https://upload.wikimedia.org/wikipedia/commons/7/75/Winston_Churchill_-_Be_Ye_Men_of_Valour.ogg"],
    ["<pl>To jest pierwszy test wielojęzycznego <en>Whisper Speech <pl>, modelu zamieniającego tekst na mowę, który Collabora i Laion nauczyli na superkomputerze <en>Jewels.", None],
    ["<en> WhisperSpeech is an Open Source library that helps you convert text to speech. <pl>Teraz także po Polsku! <en>I think I just tried saying \"now also in Polish\", don't judge me...", None],
    # ["<de> WhisperSpeech is multi-lingual <es> y puede cambiar de idioma <hi> मध्य वाक्य में"],
    ["<pl>To jest pierwszy test naszego modelu. Pozdrawiamy serdecznie.", None],
    # ["<en> The big difference between Europe <fr> et les Etats Unis <pl> jest to, że mamy tak wiele języków <uk> тут, в Європі"]
]

def parse_multilingual_text(input_text):
    pattern = r"(?:<(\w+)>)|([^<]+)"
    cur_lang = 'en'
    segments = []
    for i, (lang, txt) in enumerate(re.findall(pattern, input_text)):
        if lang: cur_lang = lang
        else: segments.append((cur_lang, f"  {txt}  ")) # add spaces to give it some time to switch languages
    if not segments: return [("en", "")]
    return segments

@spaces.GPU(enable_queue=True)
def generate_audio(pipe, segments, speaker, speaker_url, cps=14):
    if isinstance(speaker, (str, Path)): speaker = pipe.extract_spk_emb(speaker)
    elif speaker_url: speaker = pipe.extract_spk_emb(speaker_url)
    else: speaker = pipe.default_speaker
    langs, texts = [list(x) for x in zip(*segments)]
    print(texts, langs)
    stoks = pipe.t2s.generate(texts, cps=cps, lang=langs)[0]
    atoks = pipe.s2a.generate(stoks, speaker.unsqueeze(0))
    audio = pipe.vocoder.decode(atoks)
    return audio.cpu()

def whisper_speech_demo(multilingual_text, speaker_audio, speaker_url, cps):
    if len(multilingual_text) == 0:
        raise gr.Error("Please enter some text for me to speak!")

    segments = parse_multilingual_text(multilingual_text)

    audio = generate_audio(pipe, segments, speaker_audio, speaker_url, cps)

    return (24000, audio.T.numpy())

    # Did not work for me in Safari:
    # mp3 = io.BytesIO()
    # torchaudio.save(mp3, audio, 24000, format='mp3')
    # return mp3.getvalue()

with gr.Blocks() as demo:
    gr.Markdown(title)
    with gr.Row(equal_height=True):
        with gr.Column(scale=2):
            text_input = gr.Textbox(label="Enter multilingual text💬📝",
                                    value=text_examples[0][0],
                                    info="You can use `<en>` for English and `<pl>` for Polish, see examples below.")
            cps = gr.Slider(value=14, minimum=10, maximum=15, step=.25,
                            label="Tempo (in characters per second)")
            speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)🌬️💬", 
                                     sources=["upload", "microphone"],
                                     type='filepath')
            gr.Markdown("  \n  ") # fixes the bottom overflow from Audio
            url_input = gr.Textbox(label="alternatively, you can paste in an audio file URL:")
            generate_button = gr.Button("Try Collabora's WhisperSpeech🌟")
        with gr.Column(scale=1):
            output_audio = gr.Audio(label="WhisperSpeech says…")

    with gr.Row():
        gr.Examples(
            examples=text_examples,
            inputs=[text_input, url_input],
            outputs=[output_audio],
            fn=whisper_speech_demo,
            cache_examples=False,
            label="Try these to get started !🌟🌬️"
        )

    generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input, url_input, cps], outputs=output_audio)

pipe = Pipeline()#torch_compile=True)
pipe.generate("WhisperSpeech warmup")

demo.launch(server_port=3000)#, share=True)