Spaces:
Runtime error
Runtime error
File size: 11,349 Bytes
33d9042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/B1. Training.ipynb.
# %% auto 0
__all__ = ['SimpleVisual', 'validate', 'train']
# %% ../nbs/B1. Training.ipynb 2
import io
import time
import random
from pathlib import Path
from fastprogress import progress_bar, master_bar
import fastprogress
import numpy as np
import pylab as plt
import math
import IPython
import torch
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader
from torch.profiler import record_function
import webdataset as wds
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.set_float32_matmul_precision('medium')
# %% ../nbs/B1. Training.ipynb 3
class SimpleVisual:
def __init__ (self, model, masterbar, total_steps):
self.model = model
self.masterbar = masterbar
self.total_steps = total_steps
self.epochs = total_steps // masterbar.main_bar.total
gs = plt.GridSpec(2, 1, height_ratios=[3,1])
graph_fig = plt.figure(figsize=(10,6))
self.graph_fig = graph_fig
self.loss_p = graph_fig.add_subplot(gs[0])
self.lr_p = graph_fig.add_subplot(gs[1], sharex=self.loss_p)
self.lr_p.tick_params('x', labelbottom=False)
self.graph_out = None
self.its = []
self.train_losses = []
self.val_losses = []
self.lr_history = []
def show(self):
self.start_t = time.time()
self.masterbar.write(["samples", "train", "val", "time"], table=True)
self.graph_out = display(self.graph_fig, display_id=True, clear=True)
def hide(self):
if self.graph_out is not None:
self.graph_out.update(IPython.display.HTML(''))
def plot(self):
loss_p, lr_p = self.loss_p, self.lr_p
loss_p.clear()
loss_p.plot(self.its, self.train_losses)
loss_p.plot(self.its, self.val_losses)
loss_p.set_xlim(0, self.total_steps)
loss_p.set_yscale('log')
lr_p.clear()
lrs = np.array(self.lr_history)
lr_p.plot(self.its, lrs)
self.graph_out.update(self.graph_fig)
def add_data(self, it, lr, train_loss, val_los):
self.its.append(it)
self.train_losses.append(train_loss)
self.val_losses.append(val_los)
self.lr_history.append(lr)
self.plot()
def add_table_row(self, it, avg_train_loss, val_loss):
elapsed_t = time.time() - self.start_t
self.masterbar.write([it, f"{avg_train_loss:.5f}", f"{val_loss:.5f}", fastprogress.core.format_time(elapsed_t)], table=True)
def on_iter(self, bar, it, avg_train_loss, val_loss):
epoch = math.ceil(it / self.total_steps * self.epochs)
bar.comment = f"#{epoch}/{self.epochs} loss: {avg_train_loss:.3f} / {val_loss:.3f}"
# %% ../nbs/B1. Training.ipynb 4
# FIXME: we need to keep this synchronised with the validation code below...
def validate(model, val, half=True, bs=16, drop_last=False, dl_workers=8, device="cuda"):
if isinstance(val, torch.utils.data.IterableDataset):
val_loader = wds.WebLoader(val, batch_size=None, num_workers=dl_workers, drop_last=drop_last) \
.unbatched().shuffle(1024).batched(bs)
else:
val_loader = DataLoader(val, batch_size=bs, num_workers=dl_workers, pin_memory=True, drop_last=drop_last)
with torch.no_grad():
val_loss = 0
val_samples = 0
for args in val_loader:
args = [x.to(device, non_blocking=True) for x in args]
with torch.autocast(device_type=device, dtype=torch.float16 if half else torch.float32, enabled=device!='cpu'):
ps, loss = model(*args)
N = args[0].shape[0]
val_loss += loss.mean().item() * N
val_samples += N
val_loss = val_loss / val_samples
return val_loss
# %% ../nbs/B1. Training.ipynb 5
def train(checkpoint_path, model, train, val, half=True, bs=16, lr=1e-4, drop_last=False,
weight_decay=0.1, warmup_steps=10000, epochs=10, clip_gradient_norm=None,
dl_workers=8, visual_class = SimpleVisual, profiler=None,
run_valid_every_iters=8000, table_row_every_iters=80000, chkpt_every_iters=None,
device="cuda", trainable_params=None):
if chkpt_every_iters is None:
chkpt_every_iters = table_row_every_iters
mb = master_bar(range(epochs))
if isinstance(train, torch.utils.data.IterableDataset):
pct_start = min(0.3, warmup_steps / (epochs * (train.total_samples//bs)))
visual = visual_class(model, mb, epochs * train.total_samples)
# pct_start = min(0.3, warmup_steps / (epochs * len(train)))
# visual = visual_class(model, mb, epochs*len(train)*bs)
else:
pct_start = min(0.3, warmup_steps / (epochs * len(train) / bs))
visual = visual_class(model, mb, epochs*len(train))
model.visual = visual
Path(checkpoint_path).mkdir(exist_ok=True)
if isinstance(train, torch.utils.data.IterableDataset):
# train_loader = DataLoader(train, batch_size=None, num_workers=dl_workers, pin_memory=True, drop_last=False, shuffle=False)
# val_loader = DataLoader(val, batch_size=None, num_workers=dl_workers, pin_memory=True, drop_last=False)
train_loader = wds.WebLoader(train, batch_size=None, num_workers=dl_workers, drop_last=drop_last) \
.unbatched().shuffle(1024).batched(bs, partial=False)
val_loader = wds.WebLoader(val, batch_size=None, num_workers=dl_workers, drop_last=drop_last) \
.unbatched().shuffle(1024).batched(bs)
else:
train_loader = DataLoader(train, batch_size=bs, num_workers=dl_workers, pin_memory=True, drop_last=drop_last, shuffle=True)
val_loader = DataLoader(val, batch_size=bs, num_workers=dl_workers, pin_memory=True, drop_last=drop_last)
val_loss = torch.nan
avg_train_loss = torch.nan
if hasattr(model, 'setup'):
model.setup(device)
try:
scheduler = None
if trainable_params is None: trainable_params = model.parameters()
all_params = set(trainable_params)
customized_params = set()
groups = []
group_map = {}
for name,m in model.named_modules():
if hasattr(m, 'no_weight_decay') or hasattr(m, 'lr_scale'):
m_trainable = [x for x in m.parameters() if x in all_params]
if not m_trainable: continue
customized_params |= set(m_trainable)
m_wd = 0 if hasattr(m, 'no_weight_decay') else weight_decay
m_lr = lr * getattr(m, 'lr_scale', 1)
group = group_map.get((m_wd, m_lr), None)
if not group:
group = {"params": [], "names": [], "weight_decay": m_wd, "lr": m_lr}
groups.append(group)
group_map[(m_wd, m_lr)] = group
group['params'] += m_trainable
group['names'].append(name)
other_params = all_params - customized_params
if other_params:
groups = groups + [
{"names": ["other"], "params": list(other_params), "weight_decay": weight_decay },
]
optimizer = torch.optim.AdamW(lr=lr, betas=(0.9, 0.95), fused=device!='cpu', params=groups)
model._optimizer = optimizer
scaler = torch.cuda.amp.GradScaler(enabled=half)
scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer, pct_start=pct_start, steps_per_epoch=math.ceil(train.total_samples/bs), epochs=epochs,
max_lr=[pg.get('lr', lr) for pg in groups],
final_div_factor=25)
it = 0
next_val_it = it + 50
next_chkpt_it = chkpt_every_iters
next_table_it = table_row_every_iters
visual.show()
running_loss = [0]
for epoch in mb:
bar = progress_bar(train_loader, total=train.total_samples//bs, parent=mb)
for args in bar:
with record_function("forward"):
args = [x.to(device, non_blocking=True) for x in args]
# zero the parameter gradients
optimizer.zero_grad(set_to_none=True)
with torch.autocast(device_type=device, dtype=torch.float16 if half else torch.float32, enabled=device!='cpu'):
ps, loss = model(*args)
loss = loss.mean()
with record_function("backward"):
scaler.scale(loss).backward()
if clip_gradient_norm:
scaler.unscale_(optimizer)
# Since the gradients of optimizer's assigned params are unscaled, clips as usual:
torch.nn.utils.clip_grad_norm_(model.parameters(), clip_gradient_norm)
scaler.step(optimizer)
scaler.update()
scheduler.step()
if profiler is not None: profiler.step()
with record_function("running_loss"):
running_loss.append(loss.item())
running_loss = running_loss[-5:]
avg_train_loss = sum(running_loss)/len(running_loss)
if it >= next_chkpt_it:
with record_function("checkpoint"):
next_chkpt_it += chkpt_every_iters
torch.save(model.state_dict(), f'{checkpoint_path}/{it:08d}.pt')
if it >= next_val_it:
next_val_it += run_valid_every_iters
with record_function("validation"):
with record_function("model.eval"):
model.eval()
with torch.no_grad():
val_loss = 0
val_samples = 0
for args in val_loader:
args = [x.to(device, non_blocking=True) for x in args]
with torch.autocast(device_type=device, dtype=torch.float16 if half else torch.float32, enabled=device!='cpu'):
ps, loss = model(*args)
N = args[0].shape[0]
val_loss += loss.mean().item() * N
val_samples += N
val_loss = val_loss / val_samples
with record_function("model.train"):
model.train()
with record_function("plotting"):
visual.add_data(it, scheduler.get_last_lr(), avg_train_loss, val_loss)
if it >= next_table_it:
visual.add_table_row(it, avg_train_loss, val_loss)
next_table_it += table_row_every_iters
it += bs
visual.on_iter(bar, it, avg_train_loss, val_loss)
except KeyboardInterrupt:
mb.write(f"interrupted")
mb.show()
pass
finally:
visual.add_table_row(it, avg_train_loss, val_loss)
mb.show()
visual.hide()
|