Spaces:
Runtime error
Runtime error
File size: 6,142 Bytes
33d9042 4c1c145 3796c5b 33d9042 e8d0c6b 33d9042 9488c79 33d9042 e8d0c6b 33d9042 da61538 33d9042 c4d7f81 85d5a02 c4d7f81 33d9042 c4d7f81 67dbfa2 c4b4e50 33d9042 94d2571 d29782d c4d7f81 540a7bb a0ed1d8 bc5ae86 25a42f3 fe2ecf5 a0ed1d8 c4d7f81 12da9ab c4d7f81 12da9ab 084c0d1 c4d7f81 67dbfa2 ceb9e64 c4d7f81 a71b09f 540a7bb 9d5b6f7 c4d7f81 5123302 c4d7f81 68c37fe 12da9ab c4d7f81 4c8a999 c4d7f81 12da9ab 4c8a999 ce9c685 c4d7f81 33d9042 94d2571 c4d7f81 94d2571 e7e8d00 94d2571 dfeae90 94d2571 c4d7f81 33d9042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
import spaces
import tempfile
import wave
import gradio as gr
import os
import re
import torch
import soundfile as sf
import numpy as np
import torch.nn.functional as F
from whisperspeech.pipeline import Pipeline
from whisperspeech.languages import LANGUAGES
from whisperspeech.utils import resampler
title = """# 🙋🏻♂️ Welcome to🌟Collabora🌬️💬📝WhisperSpeech
You can use this ZeroGPU Space to test out the current model [🌬️💬📝collabora/whisperspeech](https://huggingface.co/collabora/whisperspeech). 🌬️💬📝collabora/whisperspeech is An Open Source text-to-speech system built by inverting Whisper. Install it and use your command line interface locally with `pip install whisperspeech`. It's like Stable Diffusion but for speech – both powerful and easily customizable : so you can use it programmatically in your own pipelines! [Contribute to whisperspeech here](https://github.com/collabora/WhisperSpeech)
You can also use 🌬️💬📝WhisperSpeech by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/laion-whisper?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
We're **celebrating the release of the whisperspeech** at [the LAION community, if you love open source ai learn more here : https://laion.ai/](https://laion.ai/) big thanks to the folks at huggingface for the community grant 🤗
### How to Use
Input text with tahe language identifiers provided to create a multilingual speech. Optionally you can add an audiosample to make a voice print.Scroll down and try the api <3 Gradio.
This space runs on ZeroGPU, so **you need to be patient** while you acquire the GPU and load the model the first time you make a request !
"""
text_examples = [
["<en> WhisperSpeech is an opensource library that helps you hack whisper."],
["<de> WhisperSpeech is multi-lingual <es> y puede cambiar de idioma <hi> मध्य वाक्य में"],
["<en> The big difference between Europe <fr> et les Etats Unis <pl> jest to, że mamy tak wiele języków <uk> тут, в Європі"]
]
def parse_multilingual_text(input_text):
pattern = r"<(\w+)>\s(.*?)\s(?=<\w+>|$)"
segments = re.findall(pattern, input_text)
return [(lang, text.strip()) for lang, text in segments if lang in LANGUAGES.keys()]
@spaces.GPU(enable_queue=True)
def generate_segment_audio(text, lang, speaker_audio, pipe):
if not isinstance(text, str):
text = text.decode("utf-8") if isinstance(text, bytes) else str(text)
speaker_audio_data = speaker_audio
audio_data = pipe.generate(text, speaker_audio_data, lang)
resample_audio = resampler(newsr=24000)
audio_data_resampled = next(resample_audio([{'sample_rate': 24000, 'samples': audio_data.cpu()}]))['samples_24k']
audio_np = audio_data_resampled.cpu().numpy()
# Debug statement print("Shape after resampling:", audio_np.shape)
return audio_np
def concatenate_audio_segments(segments):
concatenated_audio = np.concatenate(segments , axis=1)
return concatenated_audio
@spaces.GPU(enable_queue=True)
def whisper_speech_demo(multilingual_text, speaker_audio):
segments = parse_multilingual_text(multilingual_text)
if not segments:
return None, "No valid language segments found. Please use the format: <lang> text"
pipe = Pipeline()
if not hasattr(pipe, 's2a'):
return None, "Pipeline initialization failed. s2a model not loaded."
speaker_url = speaker_audio if speaker_audio is not None else None
audio_segments = []
for lang, text in segments:
text_str = text if isinstance(text, str) else str(text)
audio_np = generate_segment_audio(text_str, lang, speaker_url, pipe)
# Debug statement print("Audio segment shape:", audio_np.shape)
audio_segments.append(audio_np)
concatenated_audio = concatenate_audio_segments(audio_segments)
# Debug statement print("Final concatenated audio shape:", concatenated_audio.shape)
concatenated_audio = concatenated_audio / np.max(np.abs(concatenated_audio))
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
sf.write(tmp_file.name, concatenated_audio.T, 24000, format='WAV', subtype='PCM_16')
return tmp_file.name
with gr.Blocks() as demo:
gr.Markdown(title)
output_audio = gr.Audio(label="🌟Collabora🌬️💬📝WhisperSpeech")
generate_button = gr.Button("Try 🌟Collabora🌬️💬📝WhisperSpeech")
with gr.Row():
text_input = gr.Textbox(label="Enter multilingual text💬📝", placeholder="e.g., <en> Hello <fr> Bonjour <es> Hola")
speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)🌬️💬", sources=["upload", "microphone"])
with gr.Row():
with gr.Accordion("Available Languages and Their Tags", open=False):
formatted_language_list = "\n".join([f"`<{lang}>` {LANGUAGES[lang]}" for lang in LANGUAGES])
gr.Markdown(formatted_language_list)
with gr.Row():
with gr.Accordion("Try Multilingual Text Examples", open=False):
gr.Examples(
examples=text_examples,
inputs=[text_input],
outputs=[output_audio],
fn=whisper_speech_demo,
cache_examples=False,
label="Try these to get started !🌟🌬️"
)
generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input], outputs=output_audio)
demo.launch() |