File size: 6,300 Bytes
33d9042
4c1c145
3796c5b
33d9042
 
e8d0c6b
33d9042
9488c79
 
33d9042
e8d0c6b
33d9042
 
da61538
33d9042
c4d7f81
85d5a02
c4d7f81
33d9042
c4d7f81
 
 
 
67dbfa2
c4b4e50
33d9042
 
94d2571
 
 
 
 
 
d29782d
c4d7f81
 
 
 
 
f7fa40e
a0ed1d8
bc5ae86
25a42f3
a0ed1d8
 
 
 
 
 
 
 
 
c4d7f81
 
 
12da9ab
c4d7f81
 
 
12da9ab
084c0d1
c4d7f81
67dbfa2
ceb9e64
c4d7f81
 
 
 
 
a71b09f
9d5b6f7
c4d7f81
5123302
c4d7f81
68c37fe
 
12da9ab
c4d7f81
4c8a999
c4d7f81
12da9ab
4c8a999
 
ce9c685
 
 
c4d7f81
33d9042
 
94d2571
c4d7f81
 
94d2571
 
 
 
e7e8d00
94d2571
 
 
 
 
 
 
 
dfeae90
94d2571
 
c4d7f81
33d9042
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import spaces
import tempfile
import wave
import gradio as gr
import os
import re 
import torch
import soundfile as sf
import numpy as np
import torch.nn.functional as F
from whisperspeech.pipeline import Pipeline
from whisperspeech.languages import LANGUAGES
from whisperspeech.pipeline import Pipeline
from whisperspeech.utils import resampler

title = """# 🙋🏻‍♂️ Welcome to🌟Collabora🌬️💬📝WhisperSpeech

You can use this ZeroGPU Space to test out the current model [🌬️💬📝collabora/whisperspeech](https://huggingface.co/collabora/whisperspeech). 🌬️💬📝collabora/whisperspeech is An Open Source text-to-speech system built by inverting Whisper. Install it and use your command line interface locally with `pip install whisperspeech`. It's like Stable Diffusion but for speech – both powerful and easily customizable : so you can use it programmatically in your own pipelines! [Contribute to whisperspeech here](https://github.com/collabora/WhisperSpeech) 
You can also use 🌬️💬📝WhisperSpeech by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/laion-whisper?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> 

We're **celebrating the release of the whisperspeech** at [the LAION community, if you love open source ai learn more here : https://laion.ai/](https://laion.ai/) big thanks to the folks at huggingface for the community grant 🤗

### How to Use
Input text with tahe language identifiers provided to create a multilingual speech. Optionally you can add an audiosample to make a voice print.Scroll down and try the api <3 Gradio.
This space runs on ZeroGPU, so **you need to be patient** while you acquire the GPU and load the model the first time you make a request !
"""


text_examples = [
    ["<en> WhisperSpeech is an opensource library that helps you hack whisper."],
    ["<de> WhisperSpeech is multi-lingual <es> y puede cambiar de idioma <hi> मध्य वाक्य में"],
    ["<en> The big difference between Europe <fr> et les Etats Unis <pl> jest to, że mamy tak wiele języków <uk> тут, в Європі"]
]

def parse_multilingual_text(input_text):
    pattern = r"<(\w+)>\s(.*?)\s(?=<\w+>|$)"
    segments = re.findall(pattern, input_text)
    return [(lang, text.strip()) for lang, text in segments if lang in LANGUAGES.keys()]

@spaces.GPU
def generate_segment_audio(text, lang, speaker_audio, pipe):
    if not isinstance(text, str):
        text = text.decode("utf-8") if isinstance(text, bytes) else str(text)
    if speaker_audio is not None:
        if isinstance(speaker_audio, str):
            with open(speaker_audio, 'rb') as file:
                speaker_audio_data = file.read()
        else:
            speaker_audio_data = speaker_audio
    else:
        speaker_audio_data = None
    audio_data = pipe.generate(text, speaker_audio_data, lang)
    resample_audio = resampler(newsr=24000)
    audio_data_resampled = next(resample_audio([{'sample_rate': 24000, 'samples': audio_data.cpu()}]))['samples_24k']
    audio_np = audio_data_resampled.cpu().numpy()
    # Debug statement    print("Shape after resampling:", audio_np.shape) 
    return audio_np

def concatenate_audio_segments(segments):
    concatenated_audio = np.concatenate(segments , axis=1)
    return concatenated_audio


@spaces.GPU(enable_queue=True)
def whisper_speech_demo(multilingual_text, speaker_audio):
    segments = parse_multilingual_text(multilingual_text)
    if not segments:
        return None, "No valid language segments found. Please use the format: <lang> text"

    pipe = Pipeline()
    speaker_url = speaker_audio if speaker_audio is not None else None
    audio_segments = []

    for lang, text in segments:
        text_str = text if isinstance(text, str) else str(text)
        audio_np = generate_segment_audio(text_str, lang, speaker_url, pipe)
        # Debug statement    print("Audio segment shape:", audio_np.shape)
        audio_segments.append(audio_np)

    concatenated_audio = concatenate_audio_segments(audio_segments)
    # Debug statement        print("Final concatenated audio shape:", concatenated_audio.shape)
    concatenated_audio = concatenated_audio / np.max(np.abs(concatenated_audio))

    with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
        sf.write(tmp_file.name, concatenated_audio.T, 24000, format='WAV', subtype='PCM_16')
        return tmp_file.name

with gr.Blocks() as demo:
    gr.Markdown(title)
    output_audio = gr.Audio(label="🌟Collabora🌬️💬📝WhisperSpeech")
    generate_button = gr.Button("Try 🌟Collabora🌬️💬📝WhisperSpeech")
    with gr.Row():
        text_input = gr.Textbox(label="Enter multilingual text💬📝", placeholder="e.g., <en> Hello <fr> Bonjour <es> Hola")
        speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)🌬️💬", sources=["upload", "microphone"])
    with gr.Row():
        with gr.Accordion("Available Languages and Their Tags", open=False):
            formatted_language_list = "\n".join([f"`<{lang}>` {LANGUAGES[lang]}" for lang in LANGUAGES])
            gr.Markdown(formatted_language_list)
    with gr.Row():
        with gr.Accordion("Try Multilingual Text Examples", open=False):
            gr.Examples(
                examples=text_examples,
                inputs=[text_input],
                outputs=[output_audio],
                fn=whisper_speech_demo,
                cache_examples=False,
                label="Try these to get started !🌟🌬️"
            )
    generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input], outputs=output_audio)

demo.launch()