Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
import io | |
import os | |
import re | |
import torch | |
import torchaudio | |
from pathlib import Path | |
from whisperspeech.pipeline import Pipeline | |
DEVEL=os.environ.get('DEVEL', False) | |
title = """# 🙋🏻♂️ Welcome to Collabora's WhisperSpeech | |
WhisperSpeech is an Open Source text-to-speech system built by Collabora and LAION by inverting Whisper. | |
The model is fully open and you can run it on your local hardware. It's like **Stable Diffusion but for speech** | |
– both powerful and easily customizable. | |
[You can contribute to WhisperSpeech on Github.](https://github.com/collabora/WhisperSpeech) | |
You can also join the discussion on Discord [![](https://dcbadge.vercel.app/api/server/FANw4rHD5E)](https://discord.gg/FANw4rHD5E) | |
Huge thanks to [Tonic](https://huggingface.co/Tonic) who helped build this Space for WhisperSpeech. | |
### How to Use It | |
Write you text in the box, you can use language tags (`<en>` or `<pl>`) to create multilingual speech. | |
Optionally you can upload a speech sample or give it a file URL to clone an existing voice. Check out the | |
examples at the bottom of the page for inspiration. | |
""" | |
footer = """ | |
### How to use it locally | |
``` | |
pip install -U WhisperSpeech | |
``` | |
Afterwards: | |
``` | |
from whisperspeech.pipeline import Pipeline | |
pipe = Pipeline(torch_compile=True) | |
pipe.generate_to_file("output.wav", "Hello from WhisperSpeech.") | |
``` | |
""" | |
text_examples = [ | |
["This is the first demo of Whisper Speech, a fully open source text-to-speech model trained by Collabora and Lion on the Juwels supercomputer.", None], | |
["World War II or the Second World War was a global conflict that lasted from 1939 to 1945. The vast majority of the world's countries, including all the great powers, fought as part of two opposing military alliances: the Allies and the Axis.", "https://upload.wikimedia.org/wikipedia/commons/7/75/Winston_Churchill_-_Be_Ye_Men_of_Valour.ogg"], | |
["<pl>To jest pierwszy test wielojęzycznego <en>Whisper Speech <pl>, modelu zamieniającego tekst na mowę, który Collabora i Laion nauczyli na superkomputerze <en>Jewels.", None], | |
["<en> WhisperSpeech is an Open Source library that helps you convert text to speech. <pl>Teraz także po Polsku! <en>I think I just tried saying \"now also in Polish\", don't judge me...", None], | |
# ["<de> WhisperSpeech is multi-lingual <es> y puede cambiar de idioma <hi> मध्य वाक्य में"], | |
["<pl>To jest pierwszy test naszego modelu. Pozdrawiamy serdecznie.", None], | |
# ["<en> The big difference between Europe <fr> et les Etats Unis <pl> jest to, że mamy tak wiele języków <uk> тут, в Європі"] | |
] | |
def parse_multilingual_text(input_text): | |
pattern = r"(?:<(\w+)>)|([^<]+)" | |
cur_lang = 'en' | |
segments = [] | |
for i, (lang, txt) in enumerate(re.findall(pattern, input_text)): | |
if lang: cur_lang = lang | |
else: segments.append((cur_lang, f" {txt} ")) # add spaces to give it some time to switch languages | |
if not segments: return [("en", "")] | |
return segments | |
def generate_audio(pipe, segments, speaker, speaker_url, cps=14): | |
if isinstance(speaker, (str, Path)): speaker = pipe.extract_spk_emb(speaker) | |
elif speaker_url: speaker = pipe.extract_spk_emb(speaker_url) | |
else: speaker = pipe.default_speaker | |
langs, texts = [list(x) for x in zip(*segments)] | |
print(texts, langs) | |
stoks = pipe.t2s.generate(texts, cps=cps, lang=langs)[0] | |
atoks = pipe.s2a.generate(stoks, speaker.unsqueeze(0)) | |
audio = pipe.vocoder.decode(atoks) | |
return audio.cpu() | |
def whisper_speech_demo(multilingual_text, speaker_audio=None, speaker_url="", cps=14): | |
if len(multilingual_text) == 0: | |
raise gr.Error("Please enter some text for me to speak!") | |
segments = parse_multilingual_text(multilingual_text) | |
audio = generate_audio(pipe, segments, speaker_audio, speaker_url, cps) | |
return (24000, audio.T.numpy()) | |
# Did not work for me in Safari: | |
# mp3 = io.BytesIO() | |
# torchaudio.save(mp3, audio, 24000, format='mp3') | |
# return mp3.getvalue() | |
pipe = Pipeline(torch_compile=not DEVEL) | |
# warmup will come from regenerating the examples | |
with gr.Blocks() as demo: | |
gr.Markdown(title) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
text_input = gr.Textbox(label="Enter multilingual text💬📝", | |
value=text_examples[0][0], | |
info="You can use `<en>` for English and `<pl>` for Polish, see examples below.") | |
cps = gr.Slider(value=14, minimum=10, maximum=15, step=.25, | |
label="Tempo (in characters per second)") | |
with gr.Row(equal_height=True): | |
speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)🌬️💬", | |
sources=["upload", "microphone"], | |
type='filepath') | |
url_input = gr.Textbox(label="alternatively, you can paste in an audio file URL:") | |
gr.Markdown(" \n ") # fixes the bottom overflow from Audio | |
generate_button = gr.Button("Try Collabora's WhisperSpeech🌟") | |
with gr.Column(scale=1): | |
output_audio = gr.Audio(label="WhisperSpeech says…") | |
with gr.Column(): | |
gr.Markdown("### Try these examples to get started !🌟🌬️") | |
gr.Examples( | |
examples=text_examples, | |
inputs=[text_input, url_input], | |
outputs=[output_audio], | |
fn=whisper_speech_demo, | |
cache_examples=not DEVEL, | |
) | |
generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input, url_input, cps], outputs=output_audio) | |
gr.Markdown(footer) | |
demo.launch(server_port=3000 if DEVEL else None) | |