File size: 11,181 Bytes
f3de0a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import gradio as gr
from requests.exceptions import ConnectTimeout
import time
import requests
import base64

global headers
global cancel_url
global path
global output_image
global property_name_array
property_name_array =[]
output_image = ''
path = ''
cancel_url =''
headers = {   
        'Content-Type': 'application/json',
        'Authorization': 'Token r8_ZGZlzThfRkPZVDMygVclY1XZ9AuxmIQ2qwwPP',
        "Access-Control-Allow-Headers": "Content-Type",
        "Access-Control-Allow-Origin": '**',
        "Access-Control-Allow-Methods": "OPTIONS,POST,GET,PATCH"}

with gr.Blocks() as demo:
    owner = "nightmareai"
    name = "disco-diffusion"
    max_retries = 3
    retry_delay = 2
    for retry in range(max_retries):
       try:
          url = f'https://api.replicate.com/v1/models/{owner}/{name}'
          response = requests.get(url,  headers=headers, timeout=10)
        # Process the response
          break  # Break out of the loop if the request is successful
       except ConnectTimeout:
        if retry < max_retries - 1:
            print(f"Connection timed out. Retrying in {retry_delay} seconds...")
            time.sleep(retry_delay)
        else:
            print("Max retries exceeded. Unable to establish connection.")

    data = response.json()
    description =data.get("description", '')
    title = data.get("default_example",'').get("model",'')
    version = data.get("default_example",'').get("version",'')

    gr.Markdown(
    f"""
    # {title}
     {description}
    """)

    with gr.Row():
        with gr.Column():
            inputs =[]
            schema = data.get("latest_version", {}).get("openapi_schema", {}).get("components", {}).get("schemas", {})
            ordered_properties = sorted(schema.get("Input", {}).get("properties", {}).items(), key=lambda x: x[1].get("x-order", 0))
            required = schema.get("Input", '').get('required', [])
            print(required,"required")
            for property_name, property_info in ordered_properties :
                property_name_array.append(property_name)
                if required:
                    for item in required:
                        if item ==  property_name:
                            label = "*"+ property_info.get('title', '')
                            description = property_info.get('description','')
                            break
                        else:
                            label = property_info.get('title', '')
                            description = property_info.get('description','')
                else:
                     label = property_info.get('title', '')
                     description = property_info.get('description','')

                if "x-order" in property_info:
                    order = int(property_info.get('x-order',''))
                    if property_info.get("type", {}) == "integer":
                        value= data.get('default_example', '').get('input','').get(property_name,0)
                        if "minimum" and "maximum" in property_info:
                            if value == 0:
                              inputs.insert(order, gr.Slider(label=label, info= description, value=property_info.get('default', value), minimum=property_info.get('minimum', ''), maximum=property_info.get('maximum', ''), step=1))
                            else:
                              inputs.insert(order, gr.Slider(label=label, info= description, value=value, minimum=property_info.get('minimum', ''), maximum=property_info.get('maximum', ''), step=1)) 
                        else:
                            if value == 0:
                               inputs.insert(order, gr.Number(label=label, info= description, value=property_info.get('default', value)))
                            else:
                               inputs.insert(order, gr.Number(label=label, info= description, value=value))
                            
                    elif property_info.get("type", {}) == "string":
                        value= data.get('default_example', '').get('input','').get(property_name,'')
                        if  property_info.get('format','') == 'uri':
                          
                                if value :
                                        inputs.insert(order, gr.Image(label=label, value=value))
                                else :
                                        inputs.insert(order, gr.Image(label=label))
                          
                        else:
                            if value == '':
                               inputs.insert(order, gr.Textbox(label=label,info= description, value=property_info.get('default', value)))
                            else:
                               inputs.insert(order, gr.Textbox(label=label,info= description, value=value))

                    elif property_info.get("type", {}) == "number":
                        value= data.get('default_example', '').get('input','').get(property_name, 0)
                        if "minimum" and "maximum" in property_info:
                            if value == 0:
                                inputs.insert(order, gr.Slider(label=label,info= description, value=property_info.get('default', value), minimum=property_info.get('minimum', ''), maximum=property_info.get('maximum', '')))
                            else:
                                inputs.insert(order, gr.Slider(label=label,info= description, value=value, minimum=property_info.get('minimum', ''), maximum=property_info.get('maximum', '')))
                        else:
                            if value == 0:
                              inputs.insert(order, gr.Number(label=label,info= description, value=property_info.get('default', value)))
                            else:
                              inputs.insert(order, gr.Number(label=label,info= description, value=value)) 
                    elif property_info.get("type", {}) == "boolean":
                        value= data.get('default_example', '').get('input','').get(property_name,'')
                        if value == '':
                           inputs.insert(order, gr.Checkbox(label=label,info= description, value=property_info.get('default', value)))
                        else:
                            inputs.insert(order, gr.Checkbox(label=label,info= description, value=value))
                    else:
                        value= data.get('default_example', '').get('input','').get(property_name,'')
                        options=schema.get(property_name,'').get('enum',[])
                        if value == '':
                          inputs.insert(order, gr.Dropdown(label=property_name,info= description,choices=options, value=property_info.get("default", value)))
                        else: 
                          inputs.insert(order, gr.Dropdown(label=property_name,info= description,choices=options, value=value))  
             
            with gr.Row():
                cancel_btn = gr.Button("Cancel")
                run_btn = gr.Button("Run")
                 
        with gr.Column():
            
            outputs = []

            output_result = data.get("default_example", '').get("output")
            output_type= schema.get("Output", '').get("type", '')
            if output_type == 'array':
                    output_image =  output_result[-1]
            else:
                output_image = output_result
            print(output_image,'112121')
            outputs.append(gr.Image(value=output_image))
          
            
           
    
    def run_process(input1, input2, input3, input4, input5, input6, input7, input8, input9, input10, input11, input12, input13, input14,input15, input16, input17, input18, input19, input20, input21, input22, input23, input24, input25, input26, input27, input28,
                    input29, input30, input31, input32, input33, input34, input35, input36, input37, input38, input39, input40, input41, input42, input43):
       global cancel_url
       global property_name_array
       print(len(property_name_array))
       cancel_url=''
       url = 'https://replicate.com/api/predictions'
       
       body = {
                "version": version,
                "input": {
                    property_name_array[0]:  input1,
                    property_name_array[1]:  input2,
                    property_name_array[2]:  input2,
                    property_name_array[3]:  input4,
                    property_name_array[4]:  input5,
                    property_name_array[5]:  input6,
                    property_name_array[6]:  input7,
                    property_name_array[7]:  input8,
                    property_name_array[8]:  input9,
                    property_name_array[9]:  input10,
                    property_name_array[10]:  input11,
                    property_name_array[11]:  input12,
                    property_name_array[12]:  input13,
                    property_name_array[13]:  input14,

                    
                }
                }
    
       response = requests.post(url, json=body)
       print(response.status_code)
       if response.status_code == 201:
            response_data = response.json()
            get_url = response_data.get('urls','').get('get','')
            identifier = 'https://replicate.com/api/predictions/'+get_url.split("/")[-1]
            
            print(identifier,'')
            time.sleep(3)
            output =verify_image(identifier) 
            print(output,'333')
            if output:
                     return  gr.Image(value=output[-1])
                
       return gr.Image()
    
    def cancel_process(input1, input2, input3, input4, input5, input6, input7, input8, input9, input10, input11, input12, input13, input14,input15, input16, input17, input18, input19, input20, input21, input22, input23, input24, input25, input26, input27, input28,
                    input29, input30, input31, input32, input33, input34, input35, input36, input37, input38, input39, input40, input41, input42, input43):
        global cancel_url
        cancel_url = '123'
        global output_image
        return gr.Image(value=output_image)

    def verify_image(get_url):
        res = requests.get(get_url)
        if res.status_code == 200:
            res_data = res.json()
            if res_data.get('error',''):
                return
            else:
               if cancel_url:
                   return
               else:
                    output =  res_data.get('output', [])
                    print(output,'111')
                    if output:
                        print(output,'222')
                        return output
                        
                    else:
                        time.sleep(1)
                        val = verify_image(get_url)
                        return val
        else: 
            return  []  
    
    run_btn.click(run_process, inputs=inputs, outputs=outputs, api_name="run")
    cancel_btn.click(cancel_process, inputs=inputs, outputs=outputs, api_name="cancel")

demo.launch()