File size: 26,969 Bytes
920ac9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
##
## chabud.py - Hilfsfunktionen für die ChaBuD ECML Challenge 2023
##
## CHANGES:
## 2023-05-23: Erste Version veröffentlicht
##
## TODO:
## * Funktion um Vorhersage als CSV zu speichern für Leaderboard
## * Argument um Anzahl Trainingsepochen zu steuern (epoch, max_epoch, ... ?)
## * Finales Modell ausgeben und ggf. auch Vorhersage auf Validierungsdaten speichern
##
import logging
import os
from pathlib import Path
import pandas as pd
import albumentations as A
import albumentations.pytorch.transforms as Atorch
import h5py
import numpy as np
import pytorch_lightning as pl
import segmentation_models_pytorch as smp
import torch
import xarray as xr
from pytorch_lightning.callbacks import ModelCheckpoint
fn = Path("A:/CodingProjekte/DataMining/src/train_eval.hdf5")
#Wir wollen ein Dataframe erstellen, welches nur die Namen der Datensätze enthält, die eine größere Brandfläche als 2% haben.
#Sogesehen ist es dann eine whitelist
def basic_df():
res = []
#Anzahl aller Datensätze ("name")
count_ds = 0
with h5py.File(fn, "r") as fd:
for name, ds in fd.items():
count_burnt_pixels = 0
#Standardmäßig ist überall ein pre_fire verfügbar
pre_miss = 0
#Weil wir den Datensatz schon gecheckt haben, ist ein sicherer Zugrif auf post_fire und mask möglich (hier fehlen keine ganzen Datensätze)
post = ds["post_fire"]
mask = ds["mask"]
count_burnt_pixels = np.sum(mask)
count_pixels =512 * 512
burnt_pixel_rel = count_burnt_pixels / count_pixels
#Anders als bei mask und Post müssen wir vor Zugriff überprüfen ob "pre_fire" überhaupt existiert - Vermeidung einer Fehlermeldung
if "pre_fire" not in ds:
pre_miss = 1
res.append({"name": name, "pre_missing": pre_miss, "burnt_pixel_abs": count_burnt_pixels, "burnt_pixel_rel": burnt_pixel_rel})
return pd.DataFrame(res)
def miss_dp_df():
BANDS = ["coastal_aerosol", "blue", "green", "red",
"veg_red_1", "veg_red_2", "veg_red_3", "nir",
"veg_red_4", "water_vapour", "swir_1", "swir_2"]
res = basic_df().values
# miss_dp ist eine Liste mit "name", "pre" "post" (Werte von Pre + Postt werden mit den Bandnamen selektiert)
miss_count = 0
miss_dp = []
with h5py.File(fn, "r") as fd:
for x in res:
# skippe die Datensätze mit fehlendem Pre-Bild
# if x["pre_missing"] == 1:
# continue
pre_miss = False
# Laden der Daten aus dem Originaldatensatz
name = x["name"]
ds = to_xarray(fd[name])
pre = ds["pre"][...]
post = ds["post"][...]
mask = ds["mask"][...]
if x["pre_missing"] == 1:
# Code für den Fall, dass 'pre_missing' gleich 1 ist
post_miss = []
for band in range(pre.shape[2]):
post_miss.append((np.sum(post[band] == 0).values))
x_post_miss = xr.DataArray(post_miss, dims=["band"], coords={"band": BANDS})
miss_dp.append({"name": name, "pre": [], "post": x_post_miss.values})
else:
# Code für den Fall, dass 'pre_missing' nicht gleich 1 ist
pre_miss = []
post_miss = []
for band in range(pre.shape[2]):
pre_miss.append((np.sum(pre[band] == 0).values))
post_miss.append((np.sum(post[band] == 0).values))
x_pre_miss = xr.DataArray(pre_miss, dims=["band"], coords={"band": BANDS})
x_post_miss = xr.DataArray(post_miss, dims=["band"], coords={"band": BANDS})
miss_dp.append({"name": name, "pre": x_pre_miss.values, "post": x_post_miss.values})
return miss_dp
def wl():
whitelist = []
df = basic_df()
for index, row in df.iterrows():
if row["burnt_pixel_rel"] < 0.0025:
continue
whitelist.append(row["name"])
return whitelist
checkpoint_callback = ModelCheckpoint(
#dirpath='checkpoints/',
filename='model-{epoch:02d}-{val_iou:.2f}',
monitor='valid_iou',
mode='max',
save_top_k=3
)
__version__ = "1.0.0"
logger = logging.getLogger(__name__)
ds_path = "A:/CodingProjekte/DataMining/src/train_eval.hdf5"
def to_xarray(dataset, pretty_band_names=True):
"""Konvertiert ein HDF5-Gruppenobjekt, das Vor- und Nach-Brandbilder enthält, in xarray DataArrays.
Parameters
----------
dataset : h5py.Group
Ein HDF5-Gruppenobjekt, das die Vor- und Nach-Brandbilder, die Maske und die Metadaten enthält.
pretty_band_names : bool, optional
Wenn True (Standard), werden die "Pretty" Bandnamen verwendet, ansonsten die ursprünglichen MSI Bandnummern.
Returns
-------
dict
Ein Dictionary, das die xarray DataArrays für die Vor- und Nach-Brandbilder, die Maske und die Fold-Informationen enthält.
"""
if pretty_band_names:
BANDS = ["coastal_aerosol", "blue", "green", "red",
"veg_red_1", "veg_red_2", "veg_red_3", "nir",
"veg_red_4", "water_vapour", "swir_1", "swir_2"]
else:
BANDS = ["1", "2", "3", "4", "5", "6", "7", "8", "8a", "9", "11", "12"]
post = dataset["post_fire"][...].astype("float32") / 10000.0
try:
pre = dataset["pre_fire"][...].astype("float32") / 10000.0
except KeyError:
pre = np.zeros_like(post, dtype="float32")
mask = dataset["mask"][..., 0]
return {"pre": xr.DataArray(pre, dims=["x", "y", "band"], coords={"x": range(512), "y": range(512), "band": BANDS}),
"post": xr.DataArray(post, dims=["x", "y", "band"], coords={"x": range(512), "y": range(512), "band": BANDS}),
"mask": xr.DataArray(mask, dims=["x", "y"], coords={"x": range(512), "y": range(512)}),
"fold": dataset.attrs["fold"]}
class BandExtractor:
def __init__(self, index, name) -> None:
self.index = index
self.name = name
def __call__(self, data):
if isinstance(data, np.ndarray):
return data[..., self.index]
elif isinstance(data, xr.DataArray):
return data.sel(band=self.name).values
else:
msg = "Unknown data format."
raise Exception(msg)
def __repr__(self) -> str:
return f'BandExtractor({self.index}, "{self.name}")'
band_1 = BandExtractor(0, "coastal_aerosol")
band_2 = BandExtractor(1, "blue")
band_3 = BandExtractor(2, "green")
band_4 = BandExtractor(3, "red")
band_5 = BandExtractor(4, "veg_red_1")
band_6 = BandExtractor(5, "veg_red_2")
band_7 = BandExtractor(6, "veg_red_3")
band_8 = BandExtractor(7, "nir")
band_8a = BandExtractor(8, "veg_red_4")
band_9 = BandExtractor(9, "water_vapour")
band_11 = BandExtractor(10, "swir_1")
band_12 = BandExtractor(11, "swir_2")
def NBR(data):
"""Normalized Burn Ratio.
nbr = (nir - swir_2) / (nir + swir_2)
"""
if isinstance(data, np.ndarray):
nir = data[..., 7]
swir_2 = data[..., 11]
elif isinstance(data, xr.DataArray):
nir = data.sel(band="nir").values
swir_2 = data.sel(band="swir_2").values
else:
msg = "Unknown data format."
raise Exception(msg)
zaehler = nir - swir_2
nenner = nir + swir_2
return np.divide(zaehler, nenner, out=np.zeros_like(zaehler), where=nenner != 0.0)
def NDVI(data):
"""Normalized Difference Vegetation Index."""
if isinstance(data, np.ndarray):
red = data[..., 3]
nir = data[..., 7]
elif isinstance(data, xr.DataArray):
red = data.sel(band="red").values
nir = data.sel(band="nir").values
else:
msg = "Unknown data format."
raise Exception(msg)
zaehler = nir - red
nenner = nir + red
return np.divide(zaehler, nenner, out=np.zeros_like(zaehler), where=nenner != 0.0)
def GNDVI(data):
"""Green Normalized Difference Vegetation Index."""
if isinstance(data, np.ndarray):
green = data[..., 2]
red = data[..., 3]
nir = data[..., 7]
elif isinstance(data, xr.DataArray):
green = data.sel(band="green").values
red = data.sel(band="red").values
nir = data.sel(band="nir").values
else:
msg = "Unknown data format."
raise Exception(msg)
zaehler = nir - green
nenner = nir + red
return np.divide(zaehler, nenner, out=np.zeros_like(zaehler), where=nenner != 0.0)
def EVI(data):
"""Enhanced Vegetation Index."""
if isinstance(data, np.ndarray):
blue = data[..., 1]
red = data[..., 3]
nir = data[..., 7]
elif isinstance(data, xr.DataArray):
blue = data.sel(band="blue").values
red = data.sel(band="red").values
nir = data.sel(band="nir").values
else:
msg = "Unknown data format."
raise Exception(msg)
zaehler = nir - red
nenner = nir + 6 * red - 7.5 * blue + 1
return np.divide(zaehler, nenner, out=np.zeros_like(zaehler), where=nenner != 0.0)
def AVI(data):
"""Advanced Vegetation Index."""
if isinstance(data, np.ndarray):
red = data[..., 3]
nir = data[..., 7]
elif isinstance(data, xr.DataArray):
red = data.sel(band="red").values
nir = data.sel(band="nir").values
else:
msg = "Unknown data format."
raise Exception(msg)
base = nir * (1 - red) * (nir - red)
## FIXME: Deal with cube roots of negative values?
return np.power(base, 1./3., out=np.zeros_like(base), where=base>0)
def SAVI(data):
"""Soil Adjusted Vegetation Index."""
if isinstance(data, np.ndarray):
red = data[..., 3]
nir = data[..., 7]
elif isinstance(data, xr.DataArray):
red = data.sel(band="red").values
nir = data.sel(band="nir").values
else:
msg = "Unknown data format."
raise Exception(msg)
return (nir - red) / (nir + red + 0.428) * 1.428
def NDMI(data):
if isinstance(data, np.ndarray):
nir = data[..., 7]
swir_1 = data[..., 10]
elif isinstance(data, xr.DataArray):
nir = data.sel(band="nir").values
swir_1 = data.sel(band="swir_1").values
else:
msg = "Unknown data format."
raise Exception(msg)
zaehler = nir - swir_1
nenner = nir + swir_1
return np.divide(zaehler, nenner, out=np.zeros_like(zaehler), where=nenner != 0.0)
def MSI(data):
"""Moisture Stress Index.
Moisture Stress Index is used for canopy stress analysis, productivity
prediction and biophysical modeling. Interpretation of the MSI is inverted
relative to other water vegetation indices; thus, higher values of the
index indicate greater plant water stress and in inference, less soil
moisture content. The values of this index range from 0 to more than 3 with
the common range for green vegetation being 0.2 to 2.
"""
if isinstance(data, np.ndarray):
nir = data[..., 7]
swir_1 = data[..., 10]
elif isinstance(data, xr.DataArray):
nir = data.sel(band="nir").values
swir_1 = data.sel(band="swir_1").values
else:
msg = "Unknown data format."
raise Exception(msg)
return swir_1 - nir
def GCI(data):
"""Green Chlorophyll Index."""
if isinstance(data, np.ndarray):
green = data[..., 2]
water_vapour = data[..., 9]
elif isinstance(data, xr.DataArray):
green = data.sel(band="green").values
water_vapour = data.sel(band="water_vapour").values
else:
msg = "Unknown data format."
raise Exception(msg)
return water_vapour - green
def BSI(data):
"""Bare Soil Index."""
if isinstance(data, np.ndarray):
blue = data[..., 1]
red = data[..., 3]
nir = data[..., 7]
swir_1 = data[..., 10]
elif isinstance(data, xr.DataArray):
blue = data.sel(band="blue").values
red = data.sel(band="red").values
nir = data.sel(band="nir").values
swir_1 = data.sel(band="swir_1").values
else:
msg = "Unknown data format."
raise Exception(msg)
swir_red = swir_1 + red
nir_blue = nir + blue
zaehler = swir_red - nir_blue
nenner = swir_red + nir_blue
return np.divide(zaehler, nenner, out=np.zeros_like(zaehler), where=nenner != 0.0)
def NDWI(data):
"""Normalized Difference Water Index."""
if isinstance(data, np.ndarray):
green = data[..., 2]
nir = data[..., 7]
elif isinstance(data, xr.DataArray):
green = data.sel(band="green").values
nir = data.sel(band="nir").values
else:
msg = "Unknown data format."
raise Exception(msg)
zaehler = green - nir
nenner = green + nir
return np.divide(zaehler, nenner, out=np.zeros_like(zaehler), where=nenner != 0.0)
def NDSI(data):
"""Normalized Difference Snow Index."""
if isinstance(data, np.ndarray):
green = data[..., 2]
swir_1 = data[..., 10]
elif isinstance(data, xr.DataArray):
green = data.sel(band="green").values
swir_1 = data.sel(band="swir_1").values
else:
msg = "Unknown data format."
raise Exception(msg)
zaehler = green - swir_1
nenner = green + swir_1
return np.divide(zaehler, nenner, out=np.zeros_like(zaehler), where=nenner != 0.0)
def NDGI(data):
if isinstance(data, np.ndarray):
green = data[..., 2]
red = data[..., 3]
elif isinstance(data, xr.DataArray):
green = data.sel(band="green").values
red = data.sel(band="red").values
else:
msg = "Unknown data format."
raise Exception(msg)
zaehler = green - red
nenner = green + red
return np.divide(zaehler, nenner, out=np.zeros_like(zaehler), where=nenner != 0.0)
#Die Bänder kommen in Channels
class FiresDataset(torch.utils.data.Dataset):
def __init__(self, filename, folds=(0, 1, 2, 3, 4),
channels=[],
include_pre=False,
transform=None) -> None:
self._filename = filename
self._fd = h5py.File(filename, "r")
self._channels = channels
self._transform = transform
self._names = []
whitelist = wl()
for name in self._fd:
if self._fd[name].attrs["fold"] not in folds:
continue
if name in whitelist:
self._names.append((name, "post_fire"))
if include_pre and "pre_fire" in self._fd[name]:
pre_image = self._fd[name]["pre_fire"][...]
# Include only "real" pre_fire images
if np.mean(pre_image > 0) > 0.8:
self._names.append((name, "pre_fire"))
def number_of_channels(self):
return len(self._channels)
def __getitem__(self, idx):
name, state = self._names[idx]
data = self._fd[name][state][...].astype("float32") / 10000.0
if state == "pre_fire":
mask = np.zeros((512, 512), dtype="float32")
else:
mask = self._fd[name]["mask"][..., 0].astype("float32")
channels = []
for channel in self._channels:
channels.append(channel(data))
# Stack indices into a new image in CHW format.
image = np.stack(channels)
if self._transform:
# Transpose image so we get HWC instead of CHW format.
# Transform is responsible for transposing back as required by PyTorch.
image = image.transpose((1, 2, 0))
xfrm = self._transform(image=image, mask=mask)
image, mask = xfrm["image"], xfrm["mask"]
logger.debug("Final tensor shape: %s", image.shape)
return {"image": image, "mask": mask[None, :]}
def __len__(self) -> int:
return len(self._names)
class FireModel(pl.LightningModule):
def __init__(self,
datafile,
model,
encoder,
encoder_depth,
encoder_weights,
loss,
channels,
train_transform,
train_use_pre_fire,
n_cpus,
batch_size,
lr=0.00025,
**kwargs) -> None:
super().__init__()
self.save_hyperparameters()
self.datafile = datafile
self.lr = lr
self.channels = channels
if model == "unet":
decoder_channels = [2**(8 - d) for d in range(encoder_depth, 0, -1)]
self.model = smp.Unet(encoder_name=encoder, encoder_depth=encoder_depth, encoder_weights=encoder_weights,
decoder_channels=decoder_channels,
in_channels=len(channels), classes=1)
elif model == "unetpp":
decoder_channels = [2**(8 - d) for d in range(encoder_depth, 0, -1)]
self.model = smp.UnetPlusPlus(encoder_name=encoder, encoder_depth=encoder_depth, encoder_weights=encoder_weights,
decoder_channels=decoder_channels,
in_channels=len(channels), classes=1)
elif model == "fpn":
if encoder_depth == 3:
upsampling = 1
elif encoder_depth == 4:
upsampling = 2
elif encoder_depth == 5:
upsampling = 4
else:
raise "FPN: Unsupported encoder depth {encoder_depth}."
self.model = smp.FPN(encoder_name=encoder, encoder_weights=encoder_weights, encoder_depth=encoder_depth,
upsampling=upsampling,
in_channels=len(channels), classes=1)
elif model == "dlv3":
self.model = smp.DeepLabV3(encoder_name=encoder, encoder_weights=encoder_weights, encoder_depth=encoder_depth,
in_channels=len(channels), classes=1)
elif model == "dlv3p":
if encoder_depth != 5:
raise f"Unsupported encoder depth {encoder_depth} for DeepLabV3+ (must be 5)."
self.model = smp.DeepLabV3Plus(encoder_name=encoder, encoder_weights=encoder_weights, encoder_depth=encoder_depth,
in_channels=len(channels), classes=1)
else:
raise f"Unsupported model '{model}'."
if loss == "dice":
self.loss_fn = smp.losses.DiceLoss(smp.losses.BINARY_MODE, from_logits=True)
elif loss == "bce":
self.loss_fn = smp.losses.SoftBCEWithLogitsLoss()
else:
raise f"Unsupported loss function '{loss}'."
self.train_transform = train_transform
self.train_use_pre_fire = train_use_pre_fire
self.n_cpus = n_cpus
self.batch_size = batch_size
def forward(self, image):
mask = self.model(image)
return mask
def shared_step(self, batch, stage):
image, mask = batch["image"], batch["mask"]
logits_mask = self.forward(image)
loss = self.loss_fn(logits_mask, mask)
prob_mask = logits_mask.sigmoid()
pred_mask = (prob_mask > 0.5).long()
tp, fp, fn, tn = smp.metrics.get_stats(pred_mask, mask.long(), mode="binary")
iou = smp.metrics.iou_score(tp, fp, fn, tn, reduction="micro-imagewise")
self.log(f"{stage}_loss", loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
self.log(f"{stage}_iou", iou, on_step=False, on_epoch=True, prog_bar=True, logger=True)
return loss
def training_step(self, batch, batch_idx):
return self.shared_step(batch, "train")
def train_dataloader(self):
train_ds = FiresDataset(self.datafile, folds=[1, 2, 3, 4],
channels=self.channels,
transform=self.train_transform,
include_pre=self.train_use_pre_fire)
train_dl = torch.utils.data.DataLoader(train_ds,
batch_size=self.batch_size,
num_workers=self.n_cpus,
shuffle=True,
pin_memory=True,
drop_last=False)
return train_dl
def validation_step(self, batch, batch_idx):
return self.shared_step(batch, "valid")
def val_dataloader(self):
val_ds = FiresDataset(self.datafile, folds=[0],
channels=self.channels,
transform=None,
include_pre=False)
val_dl = torch.utils.data.DataLoader(val_ds,
batch_size=self.batch_size,
num_workers=self.n_cpus,
shuffle=False,
pin_memory=True,
drop_last=False)
return val_dl
def test_step(self, batch, batch_idx):
return self.shared_step(batch, "test")
def configure_optimizers(self):
# TODO: Can we do better? We should probably implement a learning rate schedule?
return torch.optim.Adam(self.parameters(), lr=self.lr)
def main(accelerator,
datafile,
batch_size,
channels,
n_cpus,
model,
encoder,
encoder_depth,
encoder_weights,
loss,
train_use_pre_fire,
train_use_augmentation,
learning_rate,
):
if train_use_augmentation:
train_xfrm = A.Compose([
A.VerticalFlip(p=0.5),
A.HorizontalFlip(p=0.5),
A.Transpose(p=0.5),
A.RandomRotate90(p=0.5),
Atorch.ToTensorV2(),
])
else:
train_xfrm = None
logger.info("Instantiating model.")
mdl = FireModel(datafile=datafile,
model=model,
encoder=encoder,
encoder_depth=encoder_depth,
encoder_weights=encoder_weights,
loss=loss,
channels=channels,
n_cpus=n_cpus,
train_transform=train_xfrm,
train_use_pre_fire=train_use_pre_fire,
batch_size=batch_size,
lr=learning_rate)
trainer = pl.Trainer(accelerator=accelerator, devices="auto",
log_every_n_steps=10, max_epochs=30, callbacks=[checkpoint_callback])
#callbacks=[checkpoint_callback]
logger.info("Start training.")
trainer.fit(mdl)
CHANNEL_MAP = {
"band_1": band_1,
"band_2": band_2,
"band_3": band_3,
"band_4": band_4,
"band_5": band_5,
"band_6": band_6,
"band_7": band_7,
"band_8": band_8,
"band_8a": band_8a,
"band_9": band_9,
"band_11": band_11,
"band_12": band_12,
"nbr": NBR,
"ndvi": NDVI,
"gndvi": GNDVI,
"evi": EVI,
"avi": AVI,
"savi": SAVI,
"ndmi": NDMI,
"msi": MSI,
"gci": GCI,
"bsi": BSI,
"ndwi": NDWI,
"ndsi": NDSI,
"ndgi": NDGI,
}
if __name__ == "__main__":
import argparse # Only import when needed
N_CPUS = int(os.getenv("SLURM_CPUS_PER_TASK", 1))
parser = argparse.ArgumentParser("chabud.py")
parser.add_argument("--accelerator", type=str, choices=["cpu", "gpu", "auto"], default="auto")
parser.add_argument("--datafile", type=Path, default=ds_path,
help="Location of data file used for training.")
parser.add_argument("--n-cpus", type=int, default=N_CPUS, help="Number of CPU cores to use.")
parser.add_argument("--batch-size", type=int, default=2,
help="Training and validation batch size.")
parser.add_argument("--learning-rate", type=float, default=0.00025,
help="Learning rate of optimizer.")
parser.add_argument("--model", choices=["unet", "unetpp", "fpn", "dlv3", "dlv3p"], default="unet",
help="Segmentation model")
parser.add_argument("--encoder", choices=["resnet18", "resnet34", "resnet50", "vgg13", "dpn68", "dpn92", "timm-efficientnet-b0"], default="resnet34",
help="Encoder of segmentation model")
parser.add_argument("--encoder-depth", type=int, default=5,
help="Depth of encoder stage")
parser.add_argument("--encoder-weights", choices=["random", "imagenet"], default="imagenet",
help="Weight initialization for encoder")
parser.add_argument("--loss", choices=["dice", "bce"], default="dice",
help="Loss function")
parser.add_argument("--train-use-pre_fire", action="store_true",
help="Use pre_fire data for training?")
parser.add_argument("--train-use-augmentation", action="store_true",
help="Use data augmentation in training step?")
parser.add_argument("--channels", nargs="+", choices=CHANNEL_MAP.keys(),
default=["band_1", "band_2", "band_3", "band_4", "band_5", "band_6", "band_7", "band_8", "band_8a", "band_9", "band_11", "band_12"],
help="Channels to use for prediction")
parser.add_argument("--log-level", type=str, choices=["info", "debug"], default="info")
args = parser.parse_args()
LOGGING_MAP = {"info": logging.INFO, "debug": logging.DEBUG}
logging.basicConfig(level=LOGGING_MAP[args.log_level],
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
datefmt="%d-%b-%y %H:%M:%S")
if args.encoder_weights == "random":
args.encoder_weights = None
# Translate channel names to function that calculates the channel / index.
logger.info(f"Selected channels: {args.channels}")
channels = []
for channel in args.channels:
channels.append(CHANNEL_MAP[channel])
torch.set_num_threads(args.n_cpus)
torch.set_float32_matmul_precision("medium")
main(accelerator=args.accelerator,
datafile=args.datafile,
batch_size=args.batch_size,
learning_rate=args.learning_rate,
channels=channels,
n_cpus=args.n_cpus,
model=args.model,
encoder=args.encoder,
encoder_depth=args.encoder_depth,
encoder_weights=args.encoder_weights,
loss=args.loss,
train_use_pre_fire=args.train_use_pre_fire,
train_use_augmentation=args.train_use_augmentation)
|