File size: 2,622 Bytes
98985f3
 
 
bbc0512
f3369dd
a17b6c0
 
 
72a73bd
 
 
a17b6c0
 
 
 
 
 
 
 
 
 
 
 
9f66134
c9f41a3
a17b6c0
 
8db2f29
 
 
 
 
 
 
 
 
 
a17b6c0
 
 
 
 
 
98985f3
2789d18
 
b084026
9c5a3bd
5b93c54
e363f01
 
 
 
 
9f66134
c9f41a3
e363f01
c9f41a3
e363f01
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from transformers import AutoTokenizer
import gradio as gr


def tokenize(input_text):
    llama_tokens = len(
        llama_tokenizer(input_text, add_special_tokens=True)["input_ids"]
    )
    llama3_tokens = len(
        llama3_tokenizer(input_text, add_special_tokens=True)["input_ids"]
    )
    mistral_tokens = len(
        mistral_tokenizer(input_text, add_special_tokens=True)["input_ids"]
    )
    gpt2_tokens = len(gpt2_tokenizer(input_text, add_special_tokens=True)["input_ids"])
    gpt_neox_tokens = len(
        gpt_neox_tokenizer(input_text, add_special_tokens=True)["input_ids"]
    )
    falcon_tokens = len(
        falcon_tokenizer(input_text, add_special_tokens=True)["input_ids"]
    )
    phi2_tokens = len(phi2_tokenizer(input_text, add_special_tokens=True)["input_ids"])
    t5_tokens = len(t5_tokenizer(input_text, add_special_tokens=True)["input_ids"])
    gemma_tokens = len(gemma_tokenizer(input_text, add_special_tokens=True)["input_ids"])
    command_r_tokens = len(command_r_tokenizer(input_text, add_special_tokens=True)["input_ids"])

    results = {
        "LLaMa-1/LLaMa-2": llama_tokens,
        "        LLaMa-3": llama3_tokens,
        "        Mistral": mistral_tokens,
        "    GPT-2/GPT-J": gpt2_tokens,
        "       GPT-NeoX": gpt_neox_tokens,
        "         Falcon": falcon_tokens,
        "          Phi-2": phi2_tokens,
        "             T5": t5_tokens,
        "          Gemma": gemma_tokens,
        "      Command-R": command_r_tokens
    }

    # Sort the results in descending order based on token length
    sorted_results = sorted(results.items(), key=lambda x: x[1], reverse=True)

    return "\n".join([f"{model}: {tokens}" for model, tokens in sorted_results])


if __name__ == "__main__":
    llama_tokenizer = AutoTokenizer.from_pretrained("TheBloke/Llama-2-7B-fp16")
    llama3_tokenizer = AutoTokenizer.from_pretrained("unsloth/llama-3-8b")
    mistral_tokenizer = AutoTokenizer.from_pretrained("unsloth/Mistral-7B-v0.2")
    gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2")
    gpt_neox_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
    falcon_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b")
    phi2_tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2")
    t5_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xxl")
    gemma_tokenizer = AutoTokenizer.from_pretrained("alpindale/gemma-2b")
    command_r_tokenizer = AutoTokenizer.from_pretrained("CohereForAI/c4ai-command-r-plus")

    iface = gr.Interface(fn=tokenize, inputs=gr.Textbox(lines=10), outputs="text")
    iface.launch()