Spaces:
Running
Running
from transformers import AutoTokenizer | |
import gradio as gr | |
def tokenize(input_text): | |
llama_tokens = len( | |
llama_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
) | |
llama3_tokens = len( | |
llama3_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
) | |
mistral_tokens = len( | |
mistral_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
) | |
gpt2_tokens = len( | |
gpt2_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
) | |
gpt_neox_tokens = len( | |
gpt_neox_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
) | |
falcon_tokens = len( | |
falcon_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
) | |
phi2_tokens = len( | |
phi2_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
) | |
t5_tokens = len( | |
t5_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
) | |
gemma_tokens = len( | |
gemma_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
) | |
command_r_tokens = len( | |
command_r_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
) | |
qwen_tokens = len( | |
qwen_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
) | |
codeqwen_tokens = len( | |
codeqwen_tokenizer(input_text, add_special_tokens=True)["input_ids"] | |
) | |
results = { | |
"LLaMa-1/LLaMa-2": llama_tokens, | |
"LLaMa-3": llama3_tokens, | |
"Mistral": mistral_tokens, | |
"GPT-2/GPT-J": gpt2_tokens, | |
"GPT-NeoX": gpt_neox_tokens, | |
"Falcon": falcon_tokens, | |
"Phi-1/Phi-2": phi2_tokens, | |
"T5": t5_tokens, | |
"Gemma": gemma_tokens, | |
"Command-R": command_r_tokens, | |
"Qwen/Qwen1.5": qwen_tokens, | |
"CodeQwen": codeqwen_tokens, | |
} | |
# Sort the results in descending order based on token length | |
sorted_results = sorted(results.items(), key=lambda x: x[1], reverse=True) | |
return "\n".join([f"{model}: {tokens}" for model, tokens in sorted_results]) | |
if __name__ == "__main__": | |
llama_tokenizer = AutoTokenizer.from_pretrained( | |
"TheBloke/Llama-2-7B-fp16" | |
) | |
llama3_tokenizer = AutoTokenizer.from_pretrained( | |
"unsloth/llama-3-8b" | |
) | |
mistral_tokenizer = AutoTokenizer.from_pretrained( | |
"mistral-community/Mistral-7B-v0.2" | |
) | |
gpt2_tokenizer = AutoTokenizer.from_pretrained( | |
"gpt2" | |
) | |
gpt_neox_tokenizer = AutoTokenizer.from_pretrained( | |
"EleutherAI/gpt-neox-20b" | |
) | |
falcon_tokenizer = AutoTokenizer.from_pretrained( | |
"tiiuae/falcon-7b" | |
) | |
phi2_tokenizer = AutoTokenizer.from_pretrained( | |
"microsoft/phi-2" | |
) | |
t5_tokenizer = AutoTokenizer.from_pretrained( | |
"google/flan-t5-xxl" | |
) | |
gemma_tokenizer = AutoTokenizer.from_pretrained( | |
"alpindale/gemma-2b" | |
) | |
command_r_tokenizer = AutoTokenizer.from_pretrained( | |
"CohereForAI/c4ai-command-r-plus" | |
) | |
qwen_tokenizer = AutoTokenizer.from_pretrained( | |
"Qwen/Qwen1.5-7B" | |
) | |
codeqwen_tokenizer = AutoTokenizer.from_pretrained( | |
"Qwen/CodeQwen1.5-7B" | |
) | |
iface = gr.Interface( | |
fn=tokenize, inputs=gr.Textbox(label="Input Text", lines=12), outputs="text" | |
) | |
iface.launch() | |