from transformers import AutoTokenizer import gradio as gr def load_tokenizers() gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2") gpt_neox_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") llama_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer") falcon_tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b") phi2_tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2") t5_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xxl") mistral_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1") def tokenize(input_text): gpt2_tokens = gpt2_tokenizer(input_text, add_special_tokens=True)["input_ids"] gpt_neox_tokens = gpt_neox_tokenizer(input_text, add_special_tokens=True)["input_ids"] llama_tokens = llama_tokenizer(input_text, add_special_tokens=True)["input_ids"] falcon_tokens = falcon_tokenizer(input_text, add_special_tokens=True)["input_ids"] phi2_tokens = phi2_tokenizer(input_text, add_special_tokens=True)["input_ids"] t5_tokens = t5_tokenizer(input_text, add_special_tokens=True)["input_ids"] mistral_tokens = mistral_tokenizer(input_text, add_special_tokens=True)["input_ids"] return f"GPT-2/GPT-J: {len(gpt2_tokens)}\nGPT-NeoX: {len(gpt_neox_tokens)}\nLLaMa: {len(llama_tokens)}\nFalcon: {len(falcon_tokens)}\nPhi-2: {len(phi2_tokens)}\nT5: {len(t5_tokens)}\nMistral: {len(mistral_tokens)}" if __name__ == "__main__": load_tokenizers() iface = gr.Interface(fn=tokenize, inputs=gr.Textbox(lines=7), outputs="text") iface.launch()