Narendra291's picture
Update app.py
78f76dd
raw
history blame
24.8 kB
import requests
import streamlit as st
import wikipedia
from wikipedia import WikipediaPage
import pandas as pd
import spacy
import unicodedata
from nltk.corpus import stopwords
import numpy as np
import nltk
from newspaper import Article
nltk.download('stopwords')
from string import punctuation
import json
import time
from datetime import datetime, timedelta
import urllib
from io import BytesIO
from PIL import Image, UnidentifiedImageError
from SPARQLWrapper import SPARQLWrapper, JSON, N3
from fuzzywuzzy import process, fuzz
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
from transformers import pipeline
import en_core_web_lg
sparql = SPARQLWrapper('https://dbpedia.org/sparql')
class ExtractArticleEntities:
""" Extract article entities from a document using natural language processing (NLP) and fuzzy matching.
Parameters
- text: a string or the text of a news article to be parsed
Usage:
import ExtractArticleEntities
instantiate with text parameter ie. entities = ExtractArticleEntities(text)
retrieve Who, What, When, Where entities with entities.www_json
Non-organised entities with entiities.json
"""
def __init__(self, text):
self.text = text # preprocess text at initialisation
self.text = self.preprocessing(self.text)
print(self.text)
print('_____text_____')
self.json = {}
# Create empty dataframe to hold entity data for ease of processing
self.entity_df = pd.DataFrame(columns=["entity", "description"])
# Load the spacy model
self.nlp = en_core_web_lg.load()
# self.nlp = pipeline(model="spacy/en_core_web_lg")
# Parse the text
self.entity_df = self.get_who_what_where_when()
# Disambiguate entities
self.entity_df = self.fuzzy_disambiguation()
self.get_related_entity()
self.get_popularity()
# Create JSON representation of entities
self.entity_df = self.entity_df.drop_duplicates(subset=["description"])
self.entity_df = self.entity_df.reset_index(drop=True)
# ungrouped entity returned as json
self.json = self.entity_json()
# return json with entities grouped into who, what, where, when keys
self.www_json = self.get_wwww_json()
# def get_related_entity(self):
# entities = self.entity_df.description
# labels = self.entity_df.entity
# related_entity = []
# for entity, label in zip(entities, labels):
# if label in ('PERSON', 'ORG','GPE','NORP','LOC'):
# related_entity.append(wikipedia.search(entity, 3))
# else:
# related_entity.append([None])
# self.entity_df['Wikipedia Entity'] = related_entity
def get_popularity(self):
# names = self.entity_df.description
# related_names = self.entity_df['Matched Entity']
# for name, related_name in zip(names, related_names):
# if related_name:
# related_name.append(name)
# pytrends.build_payload(related_name, timeframe='now 4-d')
# st.dataframe(pytrends.interest_over_time())
# time.sleep(2)
master_df = pd.DataFrame()
view_list = []
for entity in self.entity_df['Matched Entity']:
if entity:
entity_to_look = entity[0]
# print(entity_to_look, '_______')
entity_to_look = entity_to_look.replace(' ','_')
print(entity_to_look, '_______')
headers = {
'accept': 'application/json',
'User-Agent': 'Foo bar'
}
now = datetime.now()
now_dt = now.strftime(r'%Y%m%d')
week_back = now - timedelta(days=7)
week_back_dt = week_back.strftime(r'%Y%m%d')
resp = requests.get(f'https://wikimedia.org/api/rest_v1/metrics/pageviews/per-article/en.wikipedia.org/all-access/all-agents/{entity_to_look}/daily/{week_back_dt}/{now_dt}', headers=headers)
data = resp.json()
# print(data)
df = pd.json_normalize(data['items'])
view_count = sum(df['views'])
else:
view_count = 0
view_list.append(view_count)
self.entity_df['Views'] = view_list
for entity in ('PERSON','ORG','GPE','NORP','LOC'):
related_entity_view_list = []
grouped_df = self.entity_df[self.entity_df['entity'] == entity]
grouped_df['Matched count'] = grouped_df['fuzzy_match'].apply(len)
grouped_df['Wiki count'] = grouped_df['Matched Entity'].apply(len)
grouped_df = grouped_df.sort_values(by=['Views', 'Matched count', 'Wiki count'], ascending=False).reset_index(drop=True)
if not grouped_df.empty:
# st.dataframe(grouped_df)
master_df = pd.concat([master_df, grouped_df])
self.sorted_entity_df = master_df
if 'Views' in self.sorted_entity_df:
self.sorted_entity_df = self.sorted_entity_df.sort_values(by=['Views'], ascending=False).reset_index(drop=True)
# st.dataframe(self.sorted_entity_df)
# names = grouped_df['description'][:5].values
# print(names, type(names))
# if names.any():
# # pytrends.build_payload(names, timeframe='now 1-m')
# st.dataframe(pytrends.get_historical_interest(names,
# year_start=2022, month_start=10, day_start=1,
# hour_start=0,
# year_end=2022, month_end=10, day_end=21,
# hour_end=0, cat=0, geo='', gprop='', sleep=0))
# st.dataframe()
# time.sleep(2)
# st.dataframe(grouped_df)
def get_related_entity(self):
names = self.entity_df.description
entities = self.entity_df.entity
self.related_entity = []
match_scores = []
for name, entity in zip(names, entities):
if entity in ('PERSON','ORG','GPE','NORP','LOC'):
related_names = wikipedia.search(name, 10)
self.related_entity.append(related_names)
matches = process.extract(name, related_names)
match_scores.append([match[0] for match in matches if match[1]>= 90 ])
else:
self.related_entity.append([None])
match_scores.append([])
# Remove nulls
self.entity_df['Wikipedia Entity'] = self.related_entity
self.entity_df['Matched Entity'] = match_scores
def fuzzy_disambiguation(self):
# Load the entity data
self.entity_df['fuzzy_match'] = ''
# Load the entity data
person_choices = self.entity_df.loc[self.entity_df['entity'] == 'PERSON']
org_choices = self.entity_df.loc[self.entity_df['entity'] == 'ORG']
where_choices = self.entity_df.loc[self.entity_df['entity'] == 'GPE']
norp_choices = self.entity_df.loc[self.entity_df['entity'] == 'NORP']
loc_choices = self.entity_df.loc[self.entity_df['entity'] == 'LOC']
date_choices = self.entity_df.loc[self.entity_df['entity'] == 'DATE']
def fuzzy_match(row, choices):
'''This function disambiguates entities by looking for maximum three matches with a score of 80 or more
for each of the entity types. If there is no match, then the function returns None. '''
match = process.extract(row["description"], choices["description"], limit=3)
match = [m[0] for m in match if m[1] > 80 and m[1] != 100]
if len(match) == 0:
match = []
if match:
self.fuzzy_match_dict[row["description"]] = match
return match
# Apply the fuzzy matching function to the entity dataframe
self.fuzzy_match_dict = {}
for i, row in self.entity_df.iterrows():
if row['entity'] == 'PERSON':
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, person_choices)
elif row['entity'] == 'ORG':
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, org_choices)
elif row['entity'] == 'GPE':
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, where_choices)
elif row['entity'] == 'NORP':
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, norp_choices)
elif row['entity'] == 'LOC':
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, loc_choices)
elif row['entity'] == 'DATE':
self.entity_df.at[i, 'fuzzy_match'] = fuzzy_match(row, date_choices)
return self.entity_df
def preprocessing(self, text):
"""This function takes a text string and strips out all punctuation. It then normalizes the string to a
normalized form (using the "NFKD" normalization algorithm). Finally, it strips any special characters and
converts them to their unicode equivalents. """
# remove punctuation
text = text.translate(str.maketrans("", "", punctuation))
# normalize the text
stop_words = stopwords.words('english')
# Removing Stop words can cause losing context, instead stopwords can be utilized for knowledge
filtered_words = [word for word in self.text.split()] #if word not in stop_words]
# This is very hacky. Need a better way of handling bad encoding
pre_text = " ".join(filtered_words)
pre_text = pre_text = pre_text.replace(' ', ' ')
pre_text = pre_text.replace('’', "'")
pre_text = pre_text.replace('“', '"')
pre_text = pre_text.replace('â€', '"')
pre_text = pre_text.replace('‘', "'")
pre_text = pre_text.replace('…', '...')
pre_text = pre_text.replace('–', '-')
pre_text = pre_text.replace("\x9d", '-')
# normalize the text
pre_text = unicodedata.normalize("NFKD", pre_text)
# strip punctuation again as some remains in first pass
pre_text = pre_text.translate(str.maketrans("", "", punctuation))
return pre_text
def get_who_what_where_when(self):
"""Get entity information in a document.
This function will return a DataFrame with the following columns:
- entity: the entity being queried
- description: a brief description of the entity
Usage:
get_who_what_where_when(text)
Example:
> get_who_what_where_when('This is a test')
PERSON
ORG
GPE
LOC
PRODUCT
EVENT
LAW
LANGUAGE
NORP
DATE
GPE
TIME"""
# list to hold entity data
article_entity_list = []
# tokenize the text
doc = self.nlp(self.text)
# iterate over the entities in the document but only keep those which are meaningful
desired_entities = ['PERSON', 'ORG', 'GPE', 'LOC', 'PRODUCT', 'EVENT', 'LAW', 'LANGUAGE', 'NORP', 'DATE', 'GPE',
'TIME']
self.label_dict = {}
# stop_words = stopwords.words('english')
for ent in doc.ents:
self.label_dict[ent] = ent.label_
if ent.label_ in desired_entities:
# add the entity to the list
entity_dict = {ent.label_: ent.text}
article_entity_list.append(entity_dict)
# dedupe the entities but only on exact match of values as occasional it will assign an ORG entity to PER
deduplicated_entities = {frozenset(item.values()):
item for item in article_entity_list}.values()
#to remove duplicate names
fuzzy_remove_duplicate_ent(deduplicated_entities, threshold = 85, limit = 1)
# create a dataframe from the entities
for record in deduplicated_entities:
record_df = pd.DataFrame(record.items(), columns=["entity", "description"])
self.entity_df = pd.concat([self.entity_df, record_df], ignore_index=True)
print(self.entity_df)
print('______________________')
return self.entity_df
def fuzzy_remove_duplicate_ent(deduped_ents, threshold=85, limit=1):
search_space = list(deduped_ents)
for ent in deduped_ents:
duplicates_found = process.extract(ent, search_space.remove(ent), limit =1) # process.extract return the ent match amongst search_space with it's score
duplicates_found = [entity[0] for entity in duplicates_found if entity[1]> threshold]
if (len(duplicates_found) >0 ):
deduped_ents =[entity for entity in deduped_ents if entity not in duplicates_found]
return deduped_ents
def entity_json(self):
"""Returns a JSON representation of an entity defined by the `entity_df` dataframe. The `entity_json` function
will return a JSON object with the following fields:
- entity: The type of the entity in the text
- description: The name of the entity as described in the input text
- fuzzy_match: A list of fuzzy matches for the entity. This is useful for disambiguating entities that are similar
"""
self.json = json.loads(self.entity_df.to_json(orient='records'))
# self.json = json.dumps(self.json, indent=2)
return self.json
def get_wwww_json(self):
"""This function returns a JSON representation of the `get_who_what_where_when` function. The `get_www_json`
function will return a JSON object with the following fields:
- entity: The type of the entity in the text
- description: The name of the entity as described in the input text
- fuzzy_match: A list of fuzzy matches for the entity. This is useful for disambiguating entities that are similar
"""
# create a json object from the entity dataframe
who_dict = {"who": [ent for ent in self.entity_json() if ent['entity'] in ['ORG', 'PERSON']]}
where_dict = {"where": [ent for ent in self.entity_json() if ent['entity'] in ['GPE', 'LOC']]}
when_dict = {"when": [ent for ent in self.entity_json() if ent['entity'] in ['DATE', 'TIME']]}
what_dict = {
"what": [ent for ent in self.entity_json() if ent['entity'] in ['PRODUCT', 'EVENT', 'LAW', 'LANGUAGE',
'NORP']]}
article_wwww = [who_dict, where_dict, when_dict, what_dict]
self.wwww_json = json.dumps(article_wwww,indent=2)
return self.wwww_json
news_article = st.text_input('Paste an Article here to be parsed')
if 'parsed' not in st.session_state:
st.session_state['parsed'] = None
st.session_state['article'] = None
if news_article:
st.write('Your news article is')
st.write(news_article)
if st.button('Get details'):
parsed = ExtractArticleEntities(news_article)
if parsed:
st.session_state['article'] = parsed.sorted_entity_df
st.session_state['parsed'] = True
st.session_state['json'] = parsed.www_json
# if not st.session_state['article'].empty:
def preprocessing(text):
"""This function takes a text string and strips out all punctuation. It then normalizes the string to a
normalized form (using the "NFKD" normalization algorithm). Finally, it strips any special characters and
converts them to their unicode equivalents. """
# remove punctuation
if text:
text = text.translate(str.maketrans("", "", punctuation))
# normalize the text
stop_words = stopwords.words('english')
# Removing Stop words can cause losing context, instead stopwords can be utilized for knowledge
filtered_words = [word for word in text.split()] #if word not in stop_words]
# This is very hacky. Need a better way of handling bad encoding
pre_text = " ".join(filtered_words)
pre_text = pre_text = pre_text.replace(' ', ' ')
pre_text = pre_text.replace('’', "'")
pre_text = pre_text.replace('“', '"')
pre_text = pre_text.replace('â€', '"')
pre_text = pre_text.replace('‘', "'")
pre_text = pre_text.replace('…', '...')
pre_text = pre_text.replace('–', '-')
pre_text = pre_text.replace("\x9d", '-')
# normalize the text
pre_text = unicodedata.normalize("NFKD", pre_text)
# strip punctuation again as some remains in first pass
pre_text = pre_text.translate(str.maketrans("", "", punctuation))
else:
pre_text = None
return pre_text
def filter_wiki_df(df):
key_list = df.keys()[:2]
# df.to_csv('test.csv')
df = df[key_list]
# if len(df.keys()) == 2:
df['Match Check'] = np.where(df[df.keys()[0]] != df[df.keys()[1]], True, False)
df = df[df['Match Check']!= False]
df = df[key_list]
df = df.dropna(how='any').reset_index(drop=True)
# filtered_term = []
# for terms in df[df.keys()[0]]:
# if isinstance(terms, str):
# filtered_term.append(preprocessing(terms))
# else:
# filtered_term.append(None)
# df[df.keys()[0]] = filtered_term
df.rename(columns = {key_list[0]: 'Attribute', key_list[1]: 'Value'}, inplace = True)
return df
def get_entity_from_selectbox(related_entity):
entity = st.selectbox('Please select the term:', related_entity, key='foo')
if entity:
summary_entity = wikipedia.summary(entity, 3)
return summary_entity
if st.session_state['parsed']:
df = st.session_state['article']
# left, right = st.columns(2)
# with left:
df_to_st = pd.DataFrame()
df_to_st['Name'] = df['description']
df_to_st['Is a type of'] = df['entity']
df_to_st['Related to'] = df['Matched Entity']
df_to_st['Is a type of'] = df_to_st['Is a type of'].replace({'PERSON':'Person',
'ORG':'Organization',
'GPE':'Political Location',
'NORP':'Political or Religious Groups',
'LOC':'Non Political Location'})
# Replace name with zeroth element of related to
df_to_st['Name'] = df_to_st['Related to'].apply(lambda x : x[0])
gb = GridOptionsBuilder.from_dataframe(df_to_st)
gb.configure_pagination(paginationAutoPageSize=True) #Add pagination
gb.configure_side_bar() #Add a sidebar
gb.configure_selection('multiple', use_checkbox=True, groupSelectsChildren="Group checkbox select children") #Enable multi-row selection
gridOptions = gb.build()
# st.dataframe(df_to_st)
grid_response = AgGrid(
df_to_st,
gridOptions=gridOptions,
data_return_mode='AS_INPUT',
update_mode='MODEL_CHANGED',
fit_columns_on_grid_load=False,
enable_enterprise_modules=True,
height=350,
width='100%',
reload_data=True
)
data = grid_response['data']
selected = grid_response['selected_rows']
selected_df = pd.DataFrame(selected)
if not selected_df.empty:
selected_entity = selected_df[['Name', 'Is a type of', 'Related to']]
st.dataframe(selected_entity)
# with right:
# st.json(st.session_state['json'])
entities_list = df['description']
# selected_entity = st.selectbox('Which entity you want to choose?',
# entities_list)
if not selected_df.empty and selected_entity['Name'].any():
# lookup_url = rf'https://lookup.dbpedia.org/api/search?query={selected_entity}'
# r = requests.get(lookup_url)
selected_row = df.loc[df['description'] == selected_entity['Name'][0]]
entity_value = selected_row.values
# st.write('Entity is a ', entity_value[0][0])
label, name, fuzzy, related, related_match,_,_,_ = entity_value[0]
not_matched = [word for word in related if word not in related_match]
fuzzy = fuzzy[0] if len(fuzzy) > 0 else ''
related = related[0] if len(related) > 0 else ''
not_matched = not_matched[0] if len(not_matched) > 0 else related
related_entity_list = [name, fuzzy, not_matched]
related_entity = entity_value[0][1:]
google_query_term = ' '.join(related_entity_list)
# search()
try:
urls = [i for i in search(google_query_term ,stop = 10,pause = 2.0, tld='com', lang='en', tbs='0', user_agent = get_random_user_agent())]
except:
urls = []
# urls = search(google_query_term+' news latest', num_results=10)
st.session_state['wiki_summary'] = False
all_related_entity = []
for el in related_entity[:-2]:
if isinstance(el, str):
all_related_entity.append(el)
elif isinstance(el, int):
all_related_entity.append(str(el))
else:
all_related_entity.extend(el)
# [ if type(el) == 'int' all_related_entity.extend(el) else all_related_entity.extend([el])for el in related_entity]
for entity in all_related_entity:
# try:
if True:
if entity:
entity = entity.replace(' ', '_')
query = f'''
SELECT ?name ?comment ?image
WHERE {{ dbr:{entity} rdfs:label ?name.
dbr:{entity} rdfs:comment ?comment.
dbr:{entity} dbo:thumbnail ?image.
FILTER (lang(?name) = 'en')
FILTER (lang(?comment) = 'en')
}}'''
sparql.setQuery(query)
sparql.setReturnFormat(JSON)
qres = sparql.query().convert()
if qres['results']['bindings']:
result = qres['results']['bindings'][0]
name, comment, image_url = result['name']['value'], result['comment']['value'], result['image']['value']
# urllib.request.urlretrieve(image_url, "img.jpg")
# img = Image.open("/Users/anujkarn/NER/img.jpg")
wiki_url = f'https://en.wikipedia.org/wiki/{entity}'
st.write(name)
# st.image(img)
st.write(image_url)
# try:
response = requests.get(image_url)
try:
related_image = Image.open(BytesIO(response.content))
st.image(related_image)
except UnidentifiedImageError:
st.write('Not able to get image')
pass
# except error as e:
# st.write(f'Image not parsed because of : {e}')
summary_entity = comment
wiki_knowledge_df = pd.read_html(wiki_url)[0]
wiki_knowledge_df = filter_wiki_df(wiki_knowledge_df)
st.write('Showing desciption for entity:', name)
st.dataframe(wiki_knowledge_df)
# if st.button('Want something else?'):
# summary_entity = get_entity_from_selectbox(all_related_entity)
break
# summary_entity = wikipedia.summary(entity, 3)
else:
summary_entity = None
if not summary_entity:
try:
summary_entity = get_entity_from_selectbox(all_related_entity)
# page = WikipediaPage(entity)
except wikipedia.exceptions.DisambiguationError:
st.write('Disambiguation is there for term')
if selected_entity['Name'].any():
st.write(f'Summary for {selected_entity["Name"][0]}')
st.write(summary_entity)