Spaces:
Runtime error
Runtime error
File size: 4,381 Bytes
6a87547 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import os
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import snapshot_download
from pyramid_dit import PyramidDiTForVideoGeneration
from diffusers.utils import export_to_video
# Constants
MODEL_PATH = "pyramid-flow-model"
MODEL_REPO = "rain1011/pyramid-flow-sd3"
MODEL_VARIANT = "diffusion_transformer_768p"
MODEL_DTYPE = "bf16"
# Download and load the model
def load_model():
if not os.path.exists(MODEL_PATH):
snapshot_download(MODEL_REPO, local_dir=MODEL_PATH, local_dir_use_symlinks=False, repo_type='model')
model = PyramidDiTForVideoGeneration(
MODEL_PATH,
MODEL_DTYPE,
model_variant=MODEL_VARIANT,
)
model.vae.to("cuda")
model.dit.to("cuda")
model.text_encoder.to("cuda")
model.vae.enable_tiling()
return model
# Global model variable
model = load_model()
# Text-to-video generation function
def generate_video(prompt, duration, guidance_scale, video_guidance_scale):
temp = int(duration * 2.4) # Convert seconds to temp value (assuming 24 FPS)
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
frames = model.generate(
prompt=prompt,
num_inference_steps=[20, 20, 20],
video_num_inference_steps=[10, 10, 10],
height=768,
width=1280,
temp=temp,
guidance_scale=guidance_scale,
video_guidance_scale=video_guidance_scale,
output_type="pil",
save_memory=True,
)
output_path = "output_video.mp4"
export_to_video(frames, output_path, fps=24)
return output_path
# Image-to-video generation function
def generate_video_from_image(image, prompt, duration, video_guidance_scale):
temp = int(duration * 2.4) # Convert seconds to temp value (assuming 24 FPS)
torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
image = image.resize((1280, 768))
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
frames = model.generate_i2v(
prompt=prompt,
input_image=image,
num_inference_steps=[10, 10, 10],
temp=temp,
guidance_scale=7.0,
video_guidance_scale=video_guidance_scale,
output_type="pil",
save_memory=True,
)
output_path = "output_video_i2v.mp4"
export_to_video(frames, output_path, fps=24)
return output_path
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Pyramid Flow Video Generation Demo")
with gr.Tab("Text-to-Video"):
with gr.Row():
with gr.Column():
t2v_prompt = gr.Textbox(label="Prompt")
t2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)")
t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=9, step=0.1, label="Guidance Scale")
t2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=5, step=0.1, label="Video Guidance Scale")
t2v_generate_btn = gr.Button("Generate Video")
with gr.Column():
t2v_output = gr.Video(label="Generated Video")
t2v_generate_btn.click(
generate_video,
inputs=[t2v_prompt, t2v_duration, t2v_guidance_scale, t2v_video_guidance_scale],
outputs=t2v_output
)
with gr.Tab("Image-to-Video"):
with gr.Row():
with gr.Column():
i2v_image = gr.Image(type="pil", label="Input Image")
i2v_prompt = gr.Textbox(label="Prompt")
i2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)")
i2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=4, step=0.1, label="Video Guidance Scale")
i2v_generate_btn = gr.Button("Generate Video")
with gr.Column():
i2v_output = gr.Video(label="Generated Video")
i2v_generate_btn.click(
generate_video_from_image,
inputs=[i2v_image, i2v_prompt, i2v_duration, i2v_video_guidance_scale],
outputs=i2v_output
)
demo.launch() |