Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from einops import rearrange | |
from diffusers.utils import logging | |
from diffusers.models.attention_processor import Attention | |
from .modeling_resnet import ( | |
Downsample2D, ResnetBlock2D, CausalResnetBlock3D, Upsample2D, | |
TemporalDownsample2x, TemporalUpsample2x, | |
CausalDownsample2x, CausalTemporalDownsample2x, | |
CausalUpsample2x, CausalTemporalUpsample2x, | |
) | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def get_input_layer( | |
in_channels: int, | |
out_channels: int, | |
norm_num_groups: int, | |
layer_type: str, | |
norm_type: str = 'group', | |
affine: bool = True, | |
): | |
if layer_type == 'conv': | |
input_layer = nn.Conv3d( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
elif layer_type == 'pixel_shuffle': | |
input_layer = nn.Sequential( | |
nn.PixelUnshuffle(2), | |
nn.Conv2d(in_channels * 4, out_channels, kernel_size=1), | |
) | |
else: | |
raise NotImplementedError(f"Not support input layer {layer_type}") | |
return input_layer | |
def get_output_layer( | |
in_channels: int, | |
out_channels: int, | |
norm_num_groups: int, | |
layer_type: str, | |
norm_type: str = 'group', | |
affine: bool = True, | |
): | |
if layer_type == 'norm_act_conv': | |
output_layer = nn.Sequential( | |
nn.GroupNorm(num_channels=in_channels, num_groups=norm_num_groups, eps=1e-6, affine=affine), | |
nn.SiLU(), | |
nn.Conv3d(in_channels, out_channels, 3, stride=1, padding=1), | |
) | |
elif layer_type == 'pixel_shuffle': | |
output_layer = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels * 4, kernel_size=1), | |
nn.PixelShuffle(2), | |
) | |
else: | |
raise NotImplementedError(f"Not support output layer {layer_type}") | |
return output_layer | |
def get_down_block( | |
down_block_type: str, | |
num_layers: int, | |
in_channels: int, | |
out_channels: int = None, | |
temb_channels: int = None, | |
add_spatial_downsample: bool = None, | |
add_temporal_downsample: bool = None, | |
resnet_eps: float = 1e-6, | |
resnet_act_fn: str = 'silu', | |
resnet_groups: Optional[int] = None, | |
downsample_padding: Optional[int] = None, | |
resnet_time_scale_shift: str = "default", | |
attention_head_dim: Optional[int] = None, | |
dropout: float = 0.0, | |
norm_affline: bool = True, | |
norm_layer: str = 'layer', | |
): | |
if down_block_type == "DownEncoderBlock2D": | |
return DownEncoderBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
dropout=dropout, | |
add_spatial_downsample=add_spatial_downsample, | |
add_temporal_downsample=add_temporal_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
elif down_block_type == "DownEncoderBlockCausal3D": | |
return DownEncoderBlockCausal3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
dropout=dropout, | |
add_spatial_downsample=add_spatial_downsample, | |
add_temporal_downsample=add_temporal_downsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
downsample_padding=downsample_padding, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
) | |
raise ValueError(f"{down_block_type} does not exist.") | |
def get_up_block( | |
up_block_type: str, | |
num_layers: int, | |
in_channels: int, | |
out_channels: int, | |
prev_output_channel: int = None, | |
temb_channels: int = None, | |
add_spatial_upsample: bool = None, | |
add_temporal_upsample: bool = None, | |
resnet_eps: float = 1e-6, | |
resnet_act_fn: str = 'silu', | |
resolution_idx: Optional[int] = None, | |
resnet_groups: Optional[int] = None, | |
resnet_time_scale_shift: str = "default", | |
attention_head_dim: Optional[int] = None, | |
dropout: float = 0.0, | |
interpolate: bool = True, | |
norm_affline: bool = True, | |
norm_layer: str = 'layer', | |
) -> nn.Module: | |
if up_block_type == "UpDecoderBlock2D": | |
return UpDecoderBlock2D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_spatial_upsample=add_spatial_upsample, | |
add_temporal_upsample=add_temporal_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
temb_channels=temb_channels, | |
interpolate=interpolate, | |
) | |
elif up_block_type == "UpDecoderBlockCausal3D": | |
return UpDecoderBlockCausal3D( | |
num_layers=num_layers, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
resolution_idx=resolution_idx, | |
dropout=dropout, | |
add_spatial_upsample=add_spatial_upsample, | |
add_temporal_upsample=add_temporal_upsample, | |
resnet_eps=resnet_eps, | |
resnet_act_fn=resnet_act_fn, | |
resnet_groups=resnet_groups, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
temb_channels=temb_channels, | |
interpolate=interpolate, | |
) | |
raise ValueError(f"{up_block_type} does not exist.") | |
class UNetMidBlock2D(nn.Module): | |
""" | |
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. | |
Args: | |
in_channels (`int`): The number of input channels. | |
temb_channels (`int`): The number of temporal embedding channels. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout rate. | |
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. | |
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. | |
resnet_time_scale_shift (`str`, *optional*, defaults to `default`): | |
The type of normalization to apply to the time embeddings. This can help to improve the performance of the | |
model on tasks with long-range temporal dependencies. | |
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. | |
resnet_groups (`int`, *optional*, defaults to 32): | |
The number of groups to use in the group normalization layers of the resnet blocks. | |
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. | |
resnet_pre_norm (`bool`, *optional*, defaults to `True`): | |
Whether to use pre-normalization for the resnet blocks. | |
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. | |
attention_head_dim (`int`, *optional*, defaults to 1): | |
Dimension of a single attention head. The number of attention heads is determined based on this value and | |
the number of input channels. | |
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. | |
Returns: | |
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, | |
in_channels, height, width)`. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", # default, spatial | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
attn_groups: Optional[int] = None, | |
resnet_pre_norm: bool = True, | |
add_attention: bool = True, | |
attention_head_dim: int = 1, | |
output_scale_factor: float = 1.0, | |
): | |
super().__init__() | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
self.add_attention = add_attention | |
if attn_groups is None: | |
attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None | |
# there is always at least one resnet | |
resnets = [ | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
attentions = [] | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." | |
) | |
attention_head_dim = in_channels | |
for _ in range(num_layers): | |
if self.add_attention: | |
# Spatial attention | |
attentions.append( | |
Attention( | |
in_channels, | |
heads=in_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
rescale_output_factor=output_scale_factor, | |
eps=resnet_eps, | |
norm_num_groups=attn_groups, | |
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, | |
residual_connection=True, | |
bias=True, | |
upcast_softmax=True, | |
_from_deprecated_attn_block=True, | |
) | |
) | |
else: | |
attentions.append(None) | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: | |
hidden_states = self.resnets[0](hidden_states, temb) | |
t = hidden_states.shape[2] | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
if attn is not None: | |
hidden_states = rearrange(hidden_states, 'b c t h w -> b t c h w') | |
hidden_states = rearrange(hidden_states, 'b t c h w -> (b t) c h w') | |
hidden_states = attn(hidden_states, temb=temb) | |
hidden_states = rearrange(hidden_states, '(b t) c h w -> b t c h w', t=t) | |
hidden_states = rearrange(hidden_states, 'b t c h w -> b c t h w') | |
hidden_states = resnet(hidden_states, temb) | |
return hidden_states | |
class CausalUNetMidBlock2D(nn.Module): | |
""" | |
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. | |
Args: | |
in_channels (`int`): The number of input channels. | |
temb_channels (`int`): The number of temporal embedding channels. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout rate. | |
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. | |
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. | |
resnet_time_scale_shift (`str`, *optional*, defaults to `default`): | |
The type of normalization to apply to the time embeddings. This can help to improve the performance of the | |
model on tasks with long-range temporal dependencies. | |
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. | |
resnet_groups (`int`, *optional*, defaults to 32): | |
The number of groups to use in the group normalization layers of the resnet blocks. | |
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. | |
resnet_pre_norm (`bool`, *optional*, defaults to `True`): | |
Whether to use pre-normalization for the resnet blocks. | |
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. | |
attention_head_dim (`int`, *optional*, defaults to 1): | |
Dimension of a single attention head. The number of attention heads is determined based on this value and | |
the number of input channels. | |
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. | |
Returns: | |
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, | |
in_channels, height, width)`. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
temb_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", # default, spatial | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
attn_groups: Optional[int] = None, | |
resnet_pre_norm: bool = True, | |
add_attention: bool = True, | |
attention_head_dim: int = 1, | |
output_scale_factor: float = 1.0, | |
): | |
super().__init__() | |
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
self.add_attention = add_attention | |
if attn_groups is None: | |
attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None | |
# there is always at least one resnet | |
resnets = [ | |
CausalResnetBlock3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
] | |
attentions = [] | |
if attention_head_dim is None: | |
logger.warn( | |
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." | |
) | |
attention_head_dim = in_channels | |
for _ in range(num_layers): | |
if self.add_attention: | |
# Spatial attention | |
attentions.append( | |
Attention( | |
in_channels, | |
heads=in_channels // attention_head_dim, | |
dim_head=attention_head_dim, | |
rescale_output_factor=output_scale_factor, | |
eps=resnet_eps, | |
norm_num_groups=attn_groups, | |
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, | |
residual_connection=True, | |
bias=True, | |
upcast_softmax=True, | |
_from_deprecated_attn_block=True, | |
) | |
) | |
else: | |
attentions.append(None) | |
resnets.append( | |
CausalResnetBlock3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.attentions = nn.ModuleList(attentions) | |
self.resnets = nn.ModuleList(resnets) | |
def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, | |
is_init_image=True, temporal_chunk=False) -> torch.FloatTensor: | |
hidden_states = self.resnets[0](hidden_states, temb, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
t = hidden_states.shape[2] | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
if attn is not None: | |
hidden_states = rearrange(hidden_states, 'b c t h w -> b t c h w') | |
hidden_states = rearrange(hidden_states, 'b t c h w -> (b t) c h w') | |
hidden_states = attn(hidden_states, temb=temb) | |
hidden_states = rearrange(hidden_states, '(b t) c h w -> b t c h w', t=t) | |
hidden_states = rearrange(hidden_states, 'b t c h w -> b c t h w') | |
hidden_states = resnet(hidden_states, temb, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
return hidden_states | |
class DownEncoderBlockCausal3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_spatial_downsample: bool = True, | |
add_temporal_downsample: bool = False, | |
downsample_padding: int = 1, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
CausalResnetBlock3D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=None, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_spatial_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
CausalDownsample2x( | |
out_channels, use_conv=True, out_channels=out_channels, | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
if add_temporal_downsample: | |
self.temporal_downsamplers = nn.ModuleList( | |
[ | |
CausalTemporalDownsample2x( | |
out_channels, use_conv=True, out_channels=out_channels, | |
) | |
] | |
) | |
else: | |
self.temporal_downsamplers = None | |
def forward(self, hidden_states: torch.FloatTensor, is_init_image=True, temporal_chunk=False) -> torch.FloatTensor: | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states, temb=None, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
if self.temporal_downsamplers is not None: | |
for temporal_downsampler in self.temporal_downsamplers: | |
hidden_states = temporal_downsampler(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
return hidden_states | |
class DownEncoderBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_spatial_downsample: bool = True, | |
add_temporal_downsample: bool = False, | |
downsample_padding: int = 1, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
in_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
temb_channels=None, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_spatial_downsample: | |
self.downsamplers = nn.ModuleList( | |
[ | |
Downsample2D( | |
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
) | |
] | |
) | |
else: | |
self.downsamplers = None | |
if add_temporal_downsample: | |
self.temporal_downsamplers = nn.ModuleList( | |
[ | |
TemporalDownsample2x( | |
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, | |
) | |
] | |
) | |
else: | |
self.temporal_downsamplers = None | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states, temb=None) | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
if self.temporal_downsamplers is not None: | |
for temporal_downsampler in self.temporal_downsamplers: | |
hidden_states = temporal_downsampler(hidden_states) | |
return hidden_states | |
class UpDecoderBlock2D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", # default, spatial | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_spatial_upsample: bool = True, | |
add_temporal_upsample: bool = False, | |
temb_channels: Optional[int] = None, | |
interpolate: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
input_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
ResnetBlock2D( | |
in_channels=input_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_spatial_upsample: | |
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels, interpolate=interpolate)]) | |
else: | |
self.upsamplers = None | |
if add_temporal_upsample: | |
self.temporal_upsamplers = nn.ModuleList([TemporalUpsample2x(out_channels, use_conv=True, out_channels=out_channels, interpolate=interpolate)]) | |
else: | |
self.temporal_upsamplers = None | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, is_image: bool = False, | |
) -> torch.FloatTensor: | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states, temb=temb, scale=scale) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states) | |
if self.temporal_upsamplers is not None: | |
for temporal_upsampler in self.temporal_upsamplers: | |
hidden_states = temporal_upsampler(hidden_states, is_image=is_image) | |
return hidden_states | |
class UpDecoderBlockCausal3D(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
resolution_idx: Optional[int] = None, | |
dropout: float = 0.0, | |
num_layers: int = 1, | |
resnet_eps: float = 1e-6, | |
resnet_time_scale_shift: str = "default", # default, spatial | |
resnet_act_fn: str = "swish", | |
resnet_groups: int = 32, | |
resnet_pre_norm: bool = True, | |
output_scale_factor: float = 1.0, | |
add_spatial_upsample: bool = True, | |
add_temporal_upsample: bool = False, | |
temb_channels: Optional[int] = None, | |
interpolate: bool = True, | |
): | |
super().__init__() | |
resnets = [] | |
for i in range(num_layers): | |
input_channels = in_channels if i == 0 else out_channels | |
resnets.append( | |
CausalResnetBlock3D( | |
in_channels=input_channels, | |
out_channels=out_channels, | |
temb_channels=temb_channels, | |
eps=resnet_eps, | |
groups=resnet_groups, | |
dropout=dropout, | |
time_embedding_norm=resnet_time_scale_shift, | |
non_linearity=resnet_act_fn, | |
output_scale_factor=output_scale_factor, | |
pre_norm=resnet_pre_norm, | |
) | |
) | |
self.resnets = nn.ModuleList(resnets) | |
if add_spatial_upsample: | |
self.upsamplers = nn.ModuleList([CausalUpsample2x(out_channels, use_conv=True, out_channels=out_channels, interpolate=interpolate)]) | |
else: | |
self.upsamplers = None | |
if add_temporal_upsample: | |
self.temporal_upsamplers = nn.ModuleList([CausalTemporalUpsample2x(out_channels, use_conv=True, out_channels=out_channels, interpolate=interpolate)]) | |
else: | |
self.temporal_upsamplers = None | |
self.resolution_idx = resolution_idx | |
def forward( | |
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, | |
is_init_image=True, temporal_chunk=False, | |
) -> torch.FloatTensor: | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states, temb=temb, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
if self.temporal_upsamplers is not None: | |
for temporal_upsampler in self.temporal_upsamplers: | |
hidden_states = temporal_upsampler(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
return hidden_states | |