pyramid-flow / video_vae /modeling_causal_conv.py
multimodalart's picture
Upload 33 files
f0533a5 verified
from typing import Tuple, Union
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
import torch.nn.functional as F
from collections import deque
from einops import rearrange
from timm.models.layers import trunc_normal_
from IPython import embed
from torch import Tensor
from utils import (
is_context_parallel_initialized,
get_context_parallel_group,
get_context_parallel_world_size,
get_context_parallel_rank,
get_context_parallel_group_rank,
)
from .context_parallel_ops import (
conv_scatter_to_context_parallel_region,
conv_gather_from_context_parallel_region,
cp_pass_from_previous_rank,
)
def divisible_by(num, den):
return (num % den) == 0
def cast_tuple(t, length = 1):
return t if isinstance(t, tuple) else ((t,) * length)
def is_odd(n):
return not divisible_by(n, 2)
class CausalGroupNorm(nn.GroupNorm):
def forward(self, x: Tensor) -> Tensor:
t = x.shape[2]
x = rearrange(x, 'b c t h w -> (b t) c h w')
x = super().forward(x)
x = rearrange(x, '(b t) c h w -> b c t h w', t=t)
return x
class CausalConv3d(nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size: Union[int, Tuple[int, int, int]],
stride: Union[int, Tuple[int, int, int]] = 1,
pad_mode: str ='constant',
**kwargs
):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = cast_tuple(kernel_size, 3)
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size
self.time_kernel_size = time_kernel_size
assert is_odd(height_kernel_size) and is_odd(width_kernel_size)
dilation = kwargs.pop('dilation', 1)
self.pad_mode = pad_mode
if isinstance(stride, int):
stride = (stride, 1, 1)
time_pad = dilation * (time_kernel_size - 1)
height_pad = height_kernel_size // 2
width_pad = width_kernel_size // 2
self.temporal_stride = stride[0]
self.time_pad = time_pad
self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0)
self.time_uncausal_padding = (width_pad, width_pad, height_pad, height_pad, 0, 0)
self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=0, dilation=dilation, **kwargs)
self.cache_front_feat = deque()
def _clear_context_parallel_cache(self):
del self.cache_front_feat
self.cache_front_feat = deque()
def _init_weights(self, m):
if isinstance(m, (nn.Linear, nn.Conv2d, nn.Conv3d)):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm, nn.GroupNorm)):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def context_parallel_forward(self, x):
x = cp_pass_from_previous_rank(x, dim=2, kernel_size=self.time_kernel_size)
x = F.pad(x, self.time_uncausal_padding, mode='constant')
cp_rank = get_context_parallel_rank()
if cp_rank != 0:
if self.temporal_stride == 2 and self.time_kernel_size == 3:
x = x[:,:,1:]
x = self.conv(x)
return x
def forward(self, x, is_init_image=True, temporal_chunk=False):
# temporal_chunk: whether to use the temporal chunk
if is_context_parallel_initialized():
return self.context_parallel_forward(x)
pad_mode = self.pad_mode if self.time_pad < x.shape[2] else 'constant'
if not temporal_chunk:
x = F.pad(x, self.time_causal_padding, mode=pad_mode)
else:
assert not self.training, "The feature cache should not be used in training"
if is_init_image:
# Encode the first chunk
x = F.pad(x, self.time_causal_padding, mode=pad_mode)
self._clear_context_parallel_cache()
self.cache_front_feat.append(x[:, :, -2:].clone().detach())
else:
x = F.pad(x, self.time_uncausal_padding, mode=pad_mode)
video_front_context = self.cache_front_feat.pop()
self._clear_context_parallel_cache()
if self.temporal_stride == 1 and self.time_kernel_size == 3:
x = torch.cat([video_front_context, x], dim=2)
elif self.temporal_stride == 2 and self.time_kernel_size == 3:
x = torch.cat([video_front_context[:,:,-1:], x], dim=2)
self.cache_front_feat.append(x[:, :, -2:].clone().detach())
x = self.conv(x)
return x