import torch import torch.nn as nn import math import torch.distributed as dist def _all_to_all( input_: torch.Tensor, world_size: int, group: dist.ProcessGroup, scatter_dim: int, gather_dim: int, ): if world_size == 1: return input_ input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)] output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)] dist.all_to_all(output_list, input_list, group=group) return torch.cat(output_list, dim=gather_dim).contiguous() class _AllToAll(torch.autograd.Function): @staticmethod def forward(ctx, input_, process_group, world_size, scatter_dim, gather_dim): ctx.process_group = process_group ctx.scatter_dim = scatter_dim ctx.gather_dim = gather_dim ctx.world_size = world_size output = _all_to_all(input_, ctx.world_size, process_group, scatter_dim, gather_dim) return output @staticmethod def backward(ctx, grad_output): grad_output = _all_to_all( grad_output, ctx.world_size, ctx.process_group, ctx.gather_dim, ctx.scatter_dim, ) return ( grad_output, None, None, None, None, ) def all_to_all( input_: torch.Tensor, process_group: dist.ProcessGroup, world_size: int = 1, scatter_dim: int = 2, gather_dim: int = 1, ): return _AllToAll.apply(input_, process_group, world_size, scatter_dim, gather_dim)