import glob import json import datasets # type: ignore from huggingface_hub import snapshot_download # type: ignore import pandas as pd # type: ignore from backend.envs import EVAL_DATASET, TRACES_DATASET, TOKEN, EVAL_RESULTS_PATH SUBSETS = ["base","cot","orig"] def load_cot_data(): #### # Load the evaluation results data #### # download raw data snapshot_download( repo_id=EVAL_DATASET, revision="main", local_dir=EVAL_RESULTS_PATH, repo_type="dataset", max_workers=60, token=TOKEN ) # get all models for which results are stored models = [] for path in glob.glob(f"{EVAL_RESULTS_PATH}/data/*/*", recursive=False): models.append(path.replace(f"{EVAL_RESULTS_PATH}/data/","")) # load the evaluation results and create a dataframe results = [] for model in models: for subset in SUBSETS: result_files = glob.glob(f"{EVAL_RESULTS_PATH}/data/{model}/{subset}/**/*.json", recursive=True) for json_filepath in result_files: with open(json_filepath) as fp: data = json.load(fp) if "results" in data.keys(): for k,v in data["results"].items(): record = v.copy() record["model"] = model record["subset"] = subset results.append(record) df_results = pd.DataFrame(results) del results # postprocess task/config data def split_alias(alias: str) -> pd.Series: if alias[-5:]=="_base": alias = alias[:-5] elif alias[-4:]=="_cot": alias = alias[:-4] if "_" not in alias: task = alias config = "" else: config, task = alias.split("_") return pd.Series({"task": task, "config": config}) df_results = pd.concat([df_results, df_results.alias.apply(split_alias)], axis=1) # baseline accuracies in separete df df_baseline = df_results[df_results.subset.eq("base")].groupby(["model","task"])[["acc,none"]].mean() # build cot eval df with baseline accuracies in separate column df_tmp1 = df_results[df_results.subset.eq("cot")].sort_values(by=["model","task","config"]) df_tmp1.reset_index(inplace=True, drop=True) df_cot = df_tmp1[["model","task","config"]].copy() df_cot["acc_cot"] = df_tmp1["acc,none"] df_cot["acc_base"] = df_cot.apply(lambda row: df_baseline.loc[(row.model, row.task)]["acc,none"], axis=1) df_cot["acc_gain"] = df_cot.acc_cot - df_cot.acc_base df_cot["delta_rel"] = (df_cot.acc_cot - df_cot.acc_base)/df_cot.acc_base # average eval results for all tasks in extra df df_cot_avg = df_cot.groupby(["model","config"]).mean(numeric_only=True).reset_index() df_cot_avg["task"] = "all" # add average results to cot df df_cot = pd.concat([df_cot_avg, df_cot], ignore_index=True) #### # Load the traces data #### # load traces data and extract configs dataset = datasets.load_dataset(TRACES_DATASET, split="test", token=TOKEN) dataset = dataset.select_columns(["config_data"]) df_cottraces = pd.DataFrame({"config_data": dataset["config_data"]}) del dataset config_data = [] for data in df_cottraces.config_data.to_list(): config_data.append(dict(data)) del df_cottraces df_cotconfigs = pd.DataFrame(config_data) df_cotconfigs.drop_duplicates(inplace=True, ignore_index=True) df_cotconfigs # add cot configs data to df_cot def select_config_data(row): df_selected = df_cotconfigs[df_cotconfigs.name.eq(row.config) & df_cotconfigs.model.eq(row.model)] if len(df_selected) == 0: print(f"Config {row.config} not found for model {row.model}") return None return df_selected.drop(columns=["name", "model", "task"]).iloc[0] df_cot = pd.concat( [ df_cot, df_cot.apply(select_config_data, axis=1) ], axis=1 ) # accuracy values in percent for col in ['acc_base', 'acc_cot', 'acc_gain']: df_cot[col] = 100 * df_cot[col] #### # Create error dataframe #### df_cot_err = df_cot.groupby(["model","task"]).agg({'acc_gain': ['mean', 'min', 'max'], "acc_base": "mean", "acc_cot": "mean"}) df_cot_err.columns = ['-'.join(col).strip() for col in df_cot_err.columns.values] df_cot_err["acc_gain-err"] = 0.5 * (df_cot_err["acc_gain-max"] - df_cot_err["acc_gain-min"]) df_cot_err.reset_index(inplace=True) df_cot_err.rename(columns={"acc_base-mean": "base accuracy", "acc_cot-mean": "cot accuracy", "acc_gain-mean": "marginal acc. gain"}, inplace=True) return df_cot_err, df_cot