Spaces:
Runtime error
Runtime error
check signature with craft_hw_ocr as an option to craft_text_detection
Browse files- app.py +33 -29
- data/photologo-3.jpg +0 -0
app.py
CHANGED
@@ -3,7 +3,30 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
dh=0.25
|
8 |
def is_nw(box):
|
9 |
"""
|
@@ -35,41 +58,22 @@ def is_header(box)->bool:
|
|
35 |
""" true if for the 2 last points, y<0.2 """
|
36 |
return box[2][1]<=dhhf and box[3][1]<=dhhf
|
37 |
|
38 |
-
def is_signature(prediction_result) -> bool:
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
if is_corner(box) or is_header(box) or is_footer(box):
|
42 |
return True
|
43 |
return False
|
44 |
|
45 |
-
def detect_with_craft_text_detector(image: PIL.Image.Image):
|
46 |
-
from craft_text_detector import Craft
|
47 |
-
craft = Craft(output_dir='output', crop_type="box", cuda=torch.cuda.is_available(), export_extra=True)
|
48 |
-
result = craft.detect_text( np.asarray(image))
|
49 |
-
annotated = PIL.Image.open('output/image_text_detection.png') # image with boxes displayed
|
50 |
-
return annotated, result['boxes'], is_signature(result)
|
51 |
-
|
52 |
-
def detect_with_craft_hw_ocr(image: PIL.Image.Image):
|
53 |
-
image = np.asarray(image)
|
54 |
-
from craft_hw_ocr import OCR
|
55 |
-
ocr = OCR.load_models()
|
56 |
-
image, results = OCR.detection(image, ocr[2])
|
57 |
-
bboxes, _ = OCR.recoginition(image, results, ocr[0], ocr[1])
|
58 |
-
annotated = OCR.visualize(image, results)
|
59 |
-
return annotated, bboxes, False
|
60 |
-
|
61 |
-
def process(image:PIL.Image.Image, lib:str):
|
62 |
-
if image is None:
|
63 |
-
return None,0,False
|
64 |
-
annotated, boxes, signed = detect_with_craft_text_detector(image) if lib=='craft_text_detector' else detect_with_craft_hw_ocr( image)
|
65 |
-
return annotated, len(boxes), signed
|
66 |
-
|
67 |
gr.Interface(
|
68 |
fn = process,
|
69 |
-
inputs = [ gr.Image(
|
70 |
-
outputs = [ gr.Image(
|
71 |
title="Detect signature in image",
|
72 |
description="Is the photo or image watermarked by a signature?",
|
73 |
-
examples=[['data/photologo-1-1.jpg'], ['data/times-square.jpg']],
|
74 |
allow_flagging="never"
|
75 |
).launch(debug=True, enable_queue=True)
|
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
|
6 |
+
def detect_with_craft_text_detector(image: np.ndarray):
|
7 |
+
from craft_text_detector import Craft
|
8 |
+
craft = Craft(output_dir='output', crop_type="box", cuda=torch.cuda.is_available(), export_extra=True)
|
9 |
+
result = craft.detect_text( image)
|
10 |
+
annotated = PIL.Image.open('output/image_text_detection.png') # image with boxes displayed
|
11 |
+
return annotated, result['boxes'], is_signature(result['boxes_as_ratios'])
|
12 |
+
|
13 |
+
def detect_with_craft_hw_ocr(image: np.ndarray):
|
14 |
+
from craft_hw_ocr import OCR
|
15 |
+
ocr = OCR.load_models()
|
16 |
+
image, results = OCR.detection(image, ocr[2])
|
17 |
+
bboxes, _ = OCR.recoginition(image, results, ocr[0], ocr[1])
|
18 |
+
h,w,_=np.shape(image) # third dimension is color channel
|
19 |
+
annotated = OCR.visualize(image, results)
|
20 |
+
m=(np.asarray([w,h]))[np.newaxis,np.newaxis,:]
|
21 |
+
return annotated, bboxes, is_signature(bboxes/m)
|
22 |
+
|
23 |
+
def process(image:np.ndarray, lib:str):
|
24 |
+
if image is None:
|
25 |
+
return None,'',''
|
26 |
+
annotated, boxes, signed = detect_with_craft_text_detector(image) if lib=='craft_text_detector' else detect_with_craft_hw_ocr( image)
|
27 |
+
return annotated, len(boxes), signed
|
28 |
+
|
29 |
+
dw=0.3 # width ratio
|
30 |
dh=0.25
|
31 |
def is_nw(box):
|
32 |
"""
|
|
|
58 |
""" true if for the 2 last points, y<0.2 """
|
59 |
return box[2][1]<=dhhf and box[3][1]<=dhhf
|
60 |
|
61 |
+
# def is_signature(prediction_result) -> bool:
|
62 |
+
def is_signature(boxes) -> bool:
|
63 |
+
""" true if any of the boxes is at any corner, or header or footer """
|
64 |
+
for box in boxes:
|
65 |
+
if box[1][0]-box[0][0]<0.05: # not large enough
|
66 |
+
continue
|
67 |
if is_corner(box) or is_header(box) or is_footer(box):
|
68 |
return True
|
69 |
return False
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
gr.Interface(
|
72 |
fn = process,
|
73 |
+
inputs = [ gr.Image(label="Input"), gr.inputs.Radio(label='Model', choices=["craft_text_detector", "craft_hw_ocr"], default='craft_text_detector') ],
|
74 |
+
outputs = [ gr.Image(label="Output"), gr.Label(label="nb of text detections"), gr.Label(label="Has signature") ],
|
75 |
title="Detect signature in image",
|
76 |
description="Is the photo or image watermarked by a signature?",
|
77 |
+
examples=[['data/photologo-1-1.jpg'], ['data/times-square.jpg'], ['data/photologo-3.jpg']],
|
78 |
allow_flagging="never"
|
79 |
).launch(debug=True, enable_queue=True)
|
data/photologo-3.jpg
ADDED