import PIL.Image import gradio as gr import numpy as np from craft_text_detector import Craft craft = Craft(output_dir='output', crop_type="box", cuda=True, export_extra=True) dw=0.3 dh=0.25 def is_nw(box): """ A box happen to be a 4-pixel list in order 1 -- 2 4 -- 3 """ return box[2][0]<=dw and box[2][1]<= dh def is_ne(box): return box[3][0]>=1-dw and box[3][1]<= dh def is_se(box): return box[0][0]>=1-dw and box[0][1]>= 1-dh def is_sw(box): return box[1][0]<=dw and box[1][1]>= 1-dh def is_corner(box)->bool: """ @:returns true if the box is located in any corner """ return is_nw(box) or is_ne(box) or is_se(box) or is_sw(box) dhhf=0.2 # dh for header and footer def is_footer(box)->bool: """ true if for the 2 first points, y>0.8 """ return box[0][1]>=1-dhhf and box[1][1]>=1-dhhf def is_header(box)->bool: """ true if for the 2 last points, y<0.2 """ return box[2][1]<=dhhf and box[3][1]<=dhhf def is_signature(prediction_result) -> bool: """ true if any of the boxes is at any corner """ for box in prediction_result['boxes_as_ratios']: if is_corner(box) or is_header(box) or is_footer(box): return True return False def detect(image: PIL.Image.Image): result = craft.detect_text( np.asarray(image)) return result['boxes'], is_signature(result) def process(image:PIL.Image.Image): if image is None: return None,0 boxes,signed = detect( image) annotated = PIL.Image.open('output/image_text_detection.png') # image with boxes displayed return annotated, len(boxes), signed gr.Interface( fn = process, inputs = [ gr.Image(type="pil", label="Input") ], outputs = [ gr.Image(type="pil", label="Output"), gr.Label(label="nb of text detections"), gr.Label(label="Has signature") ], title="Detect signature in image", description="Is the photo or image watermarked by a signature?", examples=[['data/photologo-1-1.jpg'], ['data/times-square.jpg']], allow_flagging="never" ).launch(debug=True, enable_queue=True)