File size: 5,239 Bytes
2d1920d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import tqdm
import glob
import torchvision.transforms as transforms
from PIL import Image
from lib.model import *
from lib.train_util import *
from lib.sample_util import *
from lib.mesh_util import *
# from lib.options import BaseOptions
from torch.utils.data import DataLoader
import torch
import numpy as np
import json
import time
import sys
import os

sys.path.insert(0, os.path.abspath(
    os.path.join(os.path.dirname(__file__), '..')))
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))


# # get options
# opt = BaseOptions().parse()

class Evaluator:
    def __init__(self, opt, projection_mode='orthogonal'):
        self.opt = opt
        self.load_size = self.opt.loadSize
        self.to_tensor = transforms.Compose([
            transforms.Resize(self.load_size),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
        # set cuda
        cuda = torch.device(
            'cuda:%d' % opt.gpu_id) if torch.cuda.is_available() else torch.device('cpu')

        # create net
        netG = HGPIFuNet(opt, projection_mode).to(device=cuda)
        print('Using Network: ', netG.name)

        if opt.load_netG_checkpoint_path:
            netG.load_state_dict(torch.load(
                opt.load_netG_checkpoint_path, map_location=cuda))

        if opt.load_netC_checkpoint_path is not None:
            print('loading for net C ...', opt.load_netC_checkpoint_path)
            netC = ResBlkPIFuNet(opt).to(device=cuda)
            netC.load_state_dict(torch.load(
                opt.load_netC_checkpoint_path, map_location=cuda))
        else:
            netC = None

        os.makedirs(opt.results_path, exist_ok=True)
        os.makedirs('%s/%s' % (opt.results_path, opt.name), exist_ok=True)

        opt_log = os.path.join(opt.results_path, opt.name, 'opt.txt')
        with open(opt_log, 'w') as outfile:
            outfile.write(json.dumps(vars(opt), indent=2))

        self.cuda = cuda
        self.netG = netG
        self.netC = netC

    def load_image(self, image_path, mask_path):
        # Name
        img_name = os.path.splitext(os.path.basename(image_path))[0]
        # Calib
        B_MIN = np.array([-1, -1, -1])
        B_MAX = np.array([1, 1, 1])
        projection_matrix = np.identity(4)
        projection_matrix[1, 1] = -1
        calib = torch.Tensor(projection_matrix).float()
        # Mask
        mask = Image.open(mask_path).convert('L')
        mask = transforms.Resize(self.load_size)(mask)
        mask = transforms.ToTensor()(mask).float()
        # image
        image = Image.open(image_path).convert('RGB')
        image = self.to_tensor(image)
        image = mask.expand_as(image) * image
        return {
            'name': img_name,
            'img': image.unsqueeze(0),
            'calib': calib.unsqueeze(0),
            'mask': mask.unsqueeze(0),
            'b_min': B_MIN,
            'b_max': B_MAX,
        }

    def load_image_from_memory(self, image_path, mask_path, img_name):
        # Calib
        B_MIN = np.array([-1, -1, -1])
        B_MAX = np.array([1, 1, 1])
        projection_matrix = np.identity(4)
        projection_matrix[1, 1] = -1
        calib = torch.Tensor(projection_matrix).float()
        # Mask
        mask = Image.fromarray(mask_path).convert('L')
        mask = transforms.Resize(self.load_size)(mask)
        mask = transforms.ToTensor()(mask).float()
        # image
        image = Image.fromarray(image_path).convert('RGB')
        image = self.to_tensor(image)
        image = mask.expand_as(image) * image
        return {
            'name': img_name,
            'img': image.unsqueeze(0),
            'calib': calib.unsqueeze(0),
            'mask': mask.unsqueeze(0),
            'b_min': B_MIN,
            'b_max': B_MAX,
        }

    def eval(self, data, use_octree=False):
        '''
        Evaluate a data point
        :param data: a dict containing at least ['name'], ['image'], ['calib'], ['b_min'] and ['b_max'] tensors.
        :return:
        '''
        opt = self.opt
        with torch.no_grad():
            self.netG.eval()
            if self.netC:
                self.netC.eval()
            save_path = '%s/%s/result_%s.obj' % (
                opt.results_path, opt.name, data['name'])
            if self.netC:
                gen_mesh_color(opt, self.netG, self.netC, self.cuda,
                               data, save_path, use_octree=use_octree)
            else:
                gen_mesh(opt, self.netG, self.cuda, data,
                         save_path, use_octree=use_octree)


if __name__ == '__main__':
    evaluator = Evaluator(opt)

    test_images = glob.glob(os.path.join(opt.test_folder_path, '*'))
    test_images = [f for f in test_images if (
        'png' in f or 'jpg' in f) and (not 'mask' in f)]
    test_masks = [f[:-4]+'_mask.png' for f in test_images]

    print("num; ", len(test_masks))

    for image_path, mask_path in tqdm.tqdm(zip(test_images, test_masks)):
        try:
            print(image_path, mask_path)
            data = evaluator.load_image(image_path, mask_path)
            evaluator.eval(data, True)
        except Exception as e:
            print("error:", e.args)