Spaces:
Runtime error
Runtime error
import streamlit as st | |
from sentence_transformers import SentenceTransformer, util | |
from transformers import (AutoModelForQuestionAnswering, | |
AutoTokenizer, pipeline) | |
import pandas as pd | |
import regex as re | |
# Select model for question answering | |
model_name = "deepset/roberta-base-squad2" | |
# Load model & tokenizer | |
model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Create pipeline | |
pipe = pipeline('question-answering', model=model_name, tokenizer=model_name) | |
# Load DFA Press Release dataset | |
df = pd.read_csv('dfa_pr_v5_cleaned.csv', nrows=500) | |
# Group into 6 sentences-long parts | |
partitions = df['article'].values.tolist() | |
st.title('DFA Press Releases - Question Answer Bot') | |
# Type in HP-related query here | |
query = st.text_area("Type in your question below:") | |
if st.button('Search for the answer'): | |
# Perform sentence embedding on query and sentence groups | |
model_embed_name = 'sentence-transformers/msmarco-distilbert-dot-v5' | |
model_embed = SentenceTransformer(model_embed_name) | |
doc_emb = model_embed.encode(partitions) | |
query_emb = model_embed.encode(query) | |
#Compute dot score between query and all document embeddings | |
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() | |
#Combine docs & scores | |
doc_score_pairs = list(zip(partitions, scores)) | |
#Sort by decreasing score and get only 3 most similar groups | |
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], | |
reverse=True)[:1] | |
# Join these similar groups to form the context | |
context = "".join(x[0] for x in doc_score_pairs) | |
# Perform the querying | |
QA_input = {'question': query, 'context': context} | |
res = pipe(QA_input) | |
confidence = res.get('score') | |
if confidence > 0.8: | |
st.write(res.get('answer')) | |
else: | |
out = "I am not sure." | |
st.write(out) | |
#out = res.get('answer') |