cpnepo's picture
Update app.py
73e6858
import streamlit as st
from sentence_transformers import SentenceTransformer, util
from transformers import (AutoModelForQuestionAnswering,
AutoTokenizer, pipeline)
import pandas as pd
import regex as re
# Select model for question answering
model_name = "deepset/roberta-base-squad2"
# Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Create pipeline
pipe = pipeline('question-answering', model=model_name, tokenizer=model_name)
# Load DFA Press Release dataset
df = pd.read_csv('dfa_pr_v5_cleaned.csv', nrows=500)
# Group into 6 sentences-long parts
partitions = df['article'].values.tolist()
st.title('DFA Press Releases - Question Answer Bot')
# Type in HP-related query here
query = st.text_area("Type in your question below:")
if st.button('Search for the answer'):
# Perform sentence embedding on query and sentence groups
model_embed_name = 'sentence-transformers/msmarco-distilbert-dot-v5'
model_embed = SentenceTransformer(model_embed_name)
doc_emb = model_embed.encode(partitions)
query_emb = model_embed.encode(query)
#Compute dot score between query and all document embeddings
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
#Combine docs & scores
doc_score_pairs = list(zip(partitions, scores))
#Sort by decreasing score and get only 3 most similar groups
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1],
reverse=True)[:1]
# Join these similar groups to form the context
context = "".join(x[0] for x in doc_score_pairs)
# Perform the querying
QA_input = {'question': query, 'context': context}
res = pipe(QA_input)
confidence = res.get('score')
if confidence > 0.8:
st.write(res.get('answer'))
else:
out = "I am not sure."
st.write(out)
#out = res.get('answer')