Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from sentence_transformers import SentenceTransformer, util
|
3 |
+
from transformers import (AutoModelForQuestionAnswering,
|
4 |
+
AutoTokenizer, pipeline)
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
# Select model for question answering
|
10 |
+
model_name = "deepset/roberta-base-squad2"
|
11 |
+
|
12 |
+
# Load model & tokenizer
|
13 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
|
16 |
+
# Create pipeline
|
17 |
+
pipe = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
18 |
+
|
19 |
+
# Load DFA Press Release dataset
|
20 |
+
df = pd.read_csv('../data/dfa_pr_v4_cleaned.csv')
|
21 |
+
|
22 |
+
# Group into 6 sentences-long parts
|
23 |
+
partitions = df['article'].values.tolist()
|
24 |
+
|
25 |
+
st.title('DFA Question Answering Model')
|
26 |
+
|
27 |
+
# Type in HP-related query here
|
28 |
+
query = st.text_area("Type in your question below:")
|
29 |
+
|
30 |
+
if st.button('Searching for the answer...'):
|
31 |
+
# Perform sentence embedding on query and sentence groups
|
32 |
+
model_embed_name = 'sentence-transformers/msmarco-distilbert-dot-v5'
|
33 |
+
|
34 |
+
model_embed = SentenceTransformer(model_embed_name)
|
35 |
+
doc_emb = model_embed.encode(partitions)
|
36 |
+
query_emb = model_embed.encode(query)
|
37 |
+
|
38 |
+
#Compute dot score between query and all document embeddings
|
39 |
+
scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist()
|
40 |
+
|
41 |
+
#Combine docs & scores
|
42 |
+
doc_score_pairs = list(zip(partitions, scores))
|
43 |
+
|
44 |
+
#Sort by decreasing score and get only 3 most similar groups
|
45 |
+
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1],
|
46 |
+
reverse=True)[:1]
|
47 |
+
|
48 |
+
# Join these similar groups to form the context
|
49 |
+
context = "".join(x[0] for x in doc_score_pairs)
|
50 |
+
|
51 |
+
# Perform the querying
|
52 |
+
QA_input = {'question': query, 'context': context}
|
53 |
+
res = pipe(QA_input)
|
54 |
+
|
55 |
+
confidence = res.get('score')
|
56 |
+
if confidence > 0.8:
|
57 |
+
st.write(res.get('answer'))
|
58 |
+
st.write(context)
|
59 |
+
else:
|
60 |
+
out = "I am not sure."
|
61 |
+
st.write(out)
|
62 |
+
st.write(context)
|
63 |
+
#out = res.get('answer')
|