Spaces:
Runtime error
Runtime error
add application file
Browse files
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
+
import os
|
5 |
+
from threading import Thread
|
6 |
+
import spaces
|
7 |
+
import time
|
8 |
+
import subprocess
|
9 |
+
|
10 |
+
MIN_TOKENS=128
|
11 |
+
MAX_TOKENS=8192
|
12 |
+
DEFAULT_TOKENS=2048
|
13 |
+
DURATION=60
|
14 |
+
|
15 |
+
# Install flash attention
|
16 |
+
subprocess.run(
|
17 |
+
"pip install flash-attn --no-build-isolation",
|
18 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
19 |
+
shell=True,
|
20 |
+
)
|
21 |
+
|
22 |
+
# Load model and tokenizer once when the app starts
|
23 |
+
model_token = os.environ["HF_TOKEN"]
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
26 |
+
token=model_token,
|
27 |
+
trust_remote_code=True,
|
28 |
+
)
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", token=model_token)
|
30 |
+
|
31 |
+
# Set device (GPU or CPU)
|
32 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
+
model.to(device)
|
34 |
+
|
35 |
+
# Define error handling function
|
36 |
+
def handle_error(error):
|
37 |
+
return {"error": str(error)}
|
38 |
+
|
39 |
+
# Define chat function with input validation and error handling
|
40 |
+
@spaces.GPU(duration=DURATION)
|
41 |
+
def chat(message, history, temperature, do_sample, max_tokens):
|
42 |
+
try:
|
43 |
+
# Validate input
|
44 |
+
if not message:
|
45 |
+
raise ValueError("Please enter a message")
|
46 |
+
if temperature < 0 or temperature > 1:
|
47 |
+
raise ValueError("Temperature must be between 0 and 1")
|
48 |
+
if max_tokens < MIN_TOKENS or max_tokens > MAX_TOKENS:
|
49 |
+
raise ValueError(f"Max tokens must be between {MIN_TOKENS} and {MAX_TOKENS}")
|
50 |
+
|
51 |
+
# Prepare chat history
|
52 |
+
chat = []
|
53 |
+
for item in history:
|
54 |
+
chat.append({"role": "user", "content": item[0]})
|
55 |
+
if item[1] is not None:
|
56 |
+
chat.append({"role": "assistant", "content": item[1]})
|
57 |
+
chat.append({"role": "user", "content": message})
|
58 |
+
|
59 |
+
# Generate response
|
60 |
+
messages = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
61 |
+
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
|
62 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
63 |
+
generate_kwargs = dict(
|
64 |
+
model_inputs,
|
65 |
+
streamer=streamer,
|
66 |
+
max_new_tokens=max_tokens,
|
67 |
+
do_sample=do_sample,
|
68 |
+
temperature=temperature,
|
69 |
+
eos_token_id=[tokenizer.eos_token_id],
|
70 |
+
)
|
71 |
+
|
72 |
+
# Generate response
|
73 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
74 |
+
t.start()
|
75 |
+
|
76 |
+
# Yield partial responses
|
77 |
+
partial_text = ""
|
78 |
+
for new_text in streamer:
|
79 |
+
partial_text += new_text
|
80 |
+
yield partial_text
|
81 |
+
|
82 |
+
# Yield final response
|
83 |
+
yield partial_text
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
yield handle_error(e)
|
87 |
+
|
88 |
+
# Create Gradio interface
|
89 |
+
demo = gr.ChatInterface(
|
90 |
+
fn=chat,
|
91 |
+
examples=[["Write me a poem about Machine Learning."]],
|
92 |
+
additional_inputs_accordion=gr.Accordion(
|
93 |
+
label="⚙️ Parameters", open=False, render=False
|
94 |
+
),
|
95 |
+
additional_inputs=[
|
96 |
+
gr.Slider(
|
97 |
+
minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False
|
98 |
+
),
|
99 |
+
gr.Checkbox(label="Sampling", value=True),
|
100 |
+
gr.Slider(
|
101 |
+
minimum=MIN_TOKENS,
|
102 |
+
maximum=MAX_TOKENS,
|
103 |
+
step=1,
|
104 |
+
value=DEFAULT_TOKENS,
|
105 |
+
label="Max new tokens",
|
106 |
+
render=False,
|
107 |
+
),
|
108 |
+
],
|
109 |
+
stop_btn="Stop Generation",
|
110 |
+
title="Chat With LLMs",
|
111 |
+
description="Now Running [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)",
|
112 |
+
)
|
113 |
+
|
114 |
+
# Launch Gradio app
|
115 |
+
demo.launch()
|