import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import os from threading import Thread import spaces import time import subprocess MIN_TOKENS=128 MAX_TOKENS=8192 DEFAULT_TOKENS=2048 DURATION=60 # Install flash attention subprocess.run( "pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) # Load model and tokenizer once when the app starts model_token = os.environ["HF_TOKEN"] model = AutoModelForCausalLM.from_pretrained( "microsoft/Phi-3-mini-128k-instruct", token=model_token, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct", token=model_token) # Set device (GPU or CPU) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Define error handling function def handle_error(error): return {"error": str(error)} # Define chat function with input validation and error handling @spaces.GPU(duration=DURATION) def chat(message, history, temperature, do_sample, max_tokens): try: # Validate input if not message: raise ValueError("Please enter a message") if temperature < 0 or temperature > 1: raise ValueError("Temperature must be between 0 and 1") if max_tokens < MIN_TOKENS or max_tokens > MAX_TOKENS: raise ValueError(f"Max tokens must be between {MIN_TOKENS} and {MAX_TOKENS}") # Prepare chat history chat = [] for item in history: chat.append({"role": "user", "content": item[0]}) if item[1] is not None: chat.append({"role": "assistant", "content": item[1]}) chat.append({"role": "user", "content": message}) # Generate response messages = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer([messages], return_tensors="pt").to(device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=max_tokens, do_sample=do_sample, temperature=temperature, eos_token_id=[tokenizer.eos_token_id], ) # Generate response t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Yield partial responses partial_text = "" for new_text in streamer: partial_text += new_text yield partial_text # Yield final response yield partial_text except Exception as e: yield handle_error(e) # Create Gradio interface demo = gr.ChatInterface( fn=chat, examples=[["Write me a poem about Machine Learning."]], additional_inputs_accordion=gr.Accordion( label="⚙️ Parameters", open=False, render=False ), additional_inputs=[ gr.Slider( minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False ), gr.Checkbox(label="Sampling", value=True), gr.Slider( minimum=MIN_TOKENS, maximum=MAX_TOKENS, step=1, value=DEFAULT_TOKENS, label="Max new tokens", render=False, ), ], stop_btn="Stop Generation", title="Chat With LLMs", description="Now Running [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)", ) # Launch Gradio app demo.launch()