cris2312 commited on
Commit
e3eecd5
1 Parent(s): c82c65a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -8
app.py CHANGED
@@ -1,11 +1,69 @@
 
1
  import torch
2
- from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
3
- from diffusers.utils import export_to_video
 
4
 
5
- pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
6
- pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
7
- pipe.enable_model_cpu_offload()
8
 
9
- prompt = "Spiderman is surfing"
10
- video_frames = pipe(prompt, num_inference_steps=25).frames
11
- video_path = export_to_video(video_frames)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
  import torch
3
+ from diffusers import AnimateDiffPipeline, MotionAdapter, DDIMScheduler
4
+ from diffusers.utils import export_to_gif
5
+ import random
6
 
7
+ def generate_gif(image, animation_type):
8
+ # Load the motion adapter
9
+ adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
10
 
11
+ # Load SD 1.5 based finetuned model
12
+ model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE"
13
+ pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16)
14
+
15
+ # Scheduler setup
16
+ scheduler = DDIMScheduler(
17
+ clip_sample=False,
18
+ beta_start=0.00085,
19
+ beta_end=0.012,
20
+ beta_schedule="linear",
21
+ timestep_spacing="trailing",
22
+ steps_offset=1
23
+ )
24
+ pipe.scheduler = scheduler
25
+
26
+ # Enable memory savings
27
+ pipe.enable_vae_slicing()
28
+ pipe.enable_model_cpu_offload()
29
+
30
+ # Load ip_adapter
31
+ pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
32
+
33
+ # Load the selected motion adapter
34
+ pipe.load_lora_weights(f"guoyww/animatediff-motion-lora-{animation_type}", adapter_name=animation_type)
35
+
36
+ # Generate a random seed
37
+ seed = random.randint(0, 2**32 - 1)
38
+ prompt = "best quality, high quality, trending on artstation"
39
+
40
+ # Set adapter weights for the selected adapter
41
+ adapter_weight = [0.75]
42
+
43
+ pipe.set_adapters([animation_type], adapter_weights=adapter_weight)
44
+
45
+ # Generate GIF
46
+ output = pipe(
47
+ prompt=prompt,
48
+ num_frames=16,
49
+ guidance_scale=7.5,
50
+ num_inference_steps=30,
51
+ ip_adapter_image=image,
52
+ generator=torch.Generator("cpu").manual_seed(seed),
53
+ )
54
+ frames = output.frames[0]
55
+
56
+ gif_path = "output_animation.gif"
57
+ export_to_gif(frames, gif_path)
58
+ return gif_path
59
+
60
+ # Gradio interface
61
+ iface = gr.Interface(
62
+ fn=generate_gif,
63
+ inputs=[gr.Image(type="pil"), gr.Radio(["zoom-out", "tilt-up", "pan-left"])],
64
+ outputs=gr.Image(type="pil", label="Generated GIF"),
65
+ title="AnimateDiff + IP Adapter Demo",
66
+ description="Upload an image and select an motion module type to generate a GIF!"
67
+ )
68
+
69
+ iface.launch(debug=True,share=True)