csalabs commited on
Commit
8aa1143
1 Parent(s): 71be269

Upload 4 files

Browse files
Files changed (4) hide show
  1. .env +3 -0
  2. __pycache__/htmlTemp.cpython-311.pyc +0 -0
  3. app.py +104 -0
  4. htmlTemp.py +44 -0
.env ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ OPENAI_API_KEY = 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 # -------> personal Key nikhil
2
+ # OPENAI_API_KEY = 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 # -----> CSA key
3
+ HUGGINGFACEHUB_API_TOKEN = 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
__pycache__/htmlTemp.cpython-311.pyc ADDED
Binary file (1.13 kB). View file
 
app.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from dotenv import load_dotenv
3
+ from PyPDF2 import PdfReader
4
+ from langchain.text_splitter import CharacterTextSplitter
5
+ from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
6
+ from langchain.vectorstores import FAISS
7
+ from langchain.chat_models import ChatOpenAI
8
+ from langchain.memory import ConversationBufferMemory
9
+ from langchain.chains import ConversationalRetrievalChain
10
+ from htmlTemp import css, bot_template, user_template
11
+ from langchain.llms import HuggingFaceHub
12
+
13
+ def get_pdf_text(pdf_docs):
14
+ text = ""
15
+ for pdf in pdf_docs:
16
+ pdf_reader = PdfReader(pdf)
17
+ for page in pdf_reader.pages:
18
+ text += page.extract_text()
19
+ return text
20
+
21
+
22
+ def get_text_chunks(text):
23
+ text_splitter = CharacterTextSplitter(
24
+ separator="\n",
25
+ chunk_size=1000,
26
+ chunk_overlap=200,
27
+ length_function=len
28
+ )
29
+ chunks = text_splitter.split_text(text)
30
+ return chunks
31
+
32
+
33
+ def get_vectorstore(text_chunks):
34
+ # embeddings = OpenAIEmbeddings()
35
+ embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
36
+ vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
37
+ return vectorstore
38
+
39
+
40
+ def get_conversation_chain(vectorstore):
41
+ # llm = ChatOpenAI()
42
+ llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
43
+
44
+ memory = ConversationBufferMemory(
45
+ memory_key='chat_history', return_messages=True)
46
+ conversation_chain = ConversationalRetrievalChain.from_llm(
47
+ llm=llm,
48
+ retriever=vectorstore.as_retriever(),
49
+ memory=memory
50
+ )
51
+ return conversation_chain
52
+
53
+
54
+ def handle_userinput(user_question):
55
+ response = st.session_state.conversation({'question': user_question})
56
+ st.session_state.chat_history = response['chat_history']
57
+
58
+ for i, message in enumerate(st.session_state.chat_history):
59
+ if i % 2 == 0:
60
+ st.write(user_template.replace(
61
+ "{{MSG}}", message.content), unsafe_allow_html=True)
62
+ else:
63
+ st.write(bot_template.replace(
64
+ "{{MSG}}", message.content), unsafe_allow_html=True)
65
+
66
+
67
+ def main():
68
+ load_dotenv()
69
+ st.set_page_config(page_title="Chat with multiple PDFs",
70
+ page_icon=":books:")
71
+ st.write(css, unsafe_allow_html=True)
72
+
73
+ if "conversation" not in st.session_state:
74
+ st.session_state.conversation = None
75
+ if "chat_history" not in st.session_state:
76
+ st.session_state.chat_history = None
77
+
78
+ st.header("Chat with multiple PDFs :books:")
79
+ user_question = st.text_input("Ask a question about your documents:")
80
+ if user_question:
81
+ handle_userinput(user_question)
82
+
83
+ with st.sidebar:
84
+ st.subheader("Your documents")
85
+ pdf_docs = st.file_uploader(
86
+ "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
87
+ if st.button("Process"):
88
+ with st.spinner("Processing"):
89
+ # get pdf text
90
+ raw_text = get_pdf_text(pdf_docs)
91
+
92
+ # get the text chunks
93
+ text_chunks = get_text_chunks(raw_text)
94
+
95
+ # create vector store
96
+ vectorstore = get_vectorstore(text_chunks)
97
+
98
+ # create conversation chain
99
+ st.session_state.conversation = get_conversation_chain(
100
+ vectorstore)
101
+
102
+
103
+ if __name__ == '__main__':
104
+ main()
htmlTemp.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ css = '''
2
+ <style>
3
+ .chat-message {
4
+ padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
5
+ }
6
+ .chat-message.user {
7
+ background-color: #2b313e
8
+ }
9
+ .chat-message.bot {
10
+ background-color: #475063
11
+ }
12
+ .chat-message .avatar {
13
+ width: 20%;
14
+ }
15
+ .chat-message .avatar img {
16
+ max-width: 78px;
17
+ max-height: 78px;
18
+ border-radius: 50%;
19
+ object-fit: cover;
20
+ }
21
+ .chat-message .message {
22
+ width: 80%;
23
+ padding: 0 1.5rem;
24
+ color: #fff;
25
+ }
26
+ '''
27
+
28
+ bot_template = '''
29
+ <div class="chat-message bot">
30
+ <div class="avatar">
31
+ <img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png" style="max-height: 78px; max-width: 78px; border-radius: 50%; object-fit: cover;">
32
+ </div>
33
+ <div class="message">{{MSG}}</div>
34
+ </div>
35
+ '''
36
+
37
+ user_template = '''
38
+ <div class="chat-message user">
39
+ <div class="avatar">
40
+ <img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
41
+ </div>
42
+ <div class="message">{{MSG}}</div>
43
+ </div>
44
+ '''