Roop_Unleashed_V1 / roop /processors /Enhance_GFPGAN.py
cuentahate's picture
Upload 63 files
f66ad85 verified
raw
history blame
2.25 kB
from typing import Any, List, Callable
import cv2
import numpy as np
import onnxruntime
import roop.globals
from roop.typing import Face, Frame, FaceSet
from roop.utilities import resolve_relative_path
class Enhance_GFPGAN():
plugin_options:dict = None
model_gfpgan = None
name = None
devicename = None
processorname = 'gfpgan'
type = 'enhance'
def Initialize(self, plugin_options:dict):
if self.plugin_options is not None:
if self.plugin_options["devicename"] != plugin_options["devicename"]:
self.Release()
self.plugin_options = plugin_options
if self.model_gfpgan is None:
model_path = resolve_relative_path('../models/GFPGANv1.4.onnx')
self.model_gfpgan = onnxruntime.InferenceSession(model_path, None, providers=roop.globals.execution_providers)
# replace Mac mps with cpu for the moment
self.devicename = self.plugin_options["devicename"].replace('mps', 'cpu')
self.name = self.model_gfpgan.get_inputs()[0].name
def Run(self, source_faceset: FaceSet, target_face: Face, temp_frame: Frame) -> Frame:
# preprocess
input_size = temp_frame.shape[1]
temp_frame = cv2.resize(temp_frame, (512, 512), cv2.INTER_CUBIC)
temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB)
temp_frame = temp_frame.astype('float32') / 255.0
temp_frame = (temp_frame - 0.5) / 0.5
temp_frame = np.expand_dims(temp_frame, axis=0).transpose(0, 3, 1, 2)
io_binding = self.model_gfpgan.io_binding()
io_binding.bind_cpu_input("input", temp_frame)
io_binding.bind_output("1288", self.devicename)
self.model_gfpgan.run_with_iobinding(io_binding)
ort_outs = io_binding.copy_outputs_to_cpu()
result = ort_outs[0][0]
# post-process
result = np.clip(result, -1, 1)
result = (result + 1) / 2
result = result.transpose(1, 2, 0) * 255.0
result = cv2.cvtColor(result, cv2.COLOR_RGB2BGR)
scale_factor = int(result.shape[1] / input_size)
return result.astype(np.uint8), scale_factor
def Release(self):
self.model_gfpgan = None