curiousily's picture
Add files
0a13415
raw
history blame
1.02 kB
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_NAME = "curiousily/tiny-crypto-sentiment-analysis"
def create_tokenizer(model_name: str = MODEL_NAME) -> AutoTokenizer:
return AutoTokenizer.from_pretrained(model_name, use_fast=True)
def create_model(model_name: str = MODEL_NAME) -> AutoModelForCausalLM:
return AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", torch_dtype=torch.float16
)
def predict(
prompt: str,
model: AutoModelForCausalLM,
tokenizer: AutoTokenizer,
max_new_tokens: int = 16,
return_full_text: bool = False,
) -> str:
encoding = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(inputs=encoding, max_new_tokens=max_new_tokens)
if outputs.numel() == 0:
return ""
prediction = outputs[0]
if not return_full_text:
prediction = prediction[encoding.shape[1] :]
return tokenizer.decode(prediction, skip_special_tokens=True).strip()