curt-park's picture
Update app.py
6a28334
import os
import urllib
from functools import lru_cache
from random import randint
from typing import Any, Callable, Dict, List, Tuple
import clip
import cv2
import gradio as gr
import numpy as np
import PIL
import torch
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
CHECKPOINT_PATH = os.path.join(os.path.expanduser("~"), ".cache", "SAM")
CHECKPOINT_NAME = "sam_vit_h_4b8939.pth"
CHECKPOINT_URL = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
MODEL_TYPE = "default"
MAX_WIDTH = MAX_HEIGHT = 1024
TOP_K_OBJ = 100
THRESHOLD = 0.85
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@lru_cache
def load_mask_generator() -> SamAutomaticMaskGenerator:
if not os.path.exists(CHECKPOINT_PATH):
os.makedirs(CHECKPOINT_PATH)
checkpoint = os.path.join(CHECKPOINT_PATH, CHECKPOINT_NAME)
if not os.path.exists(checkpoint):
urllib.request.urlretrieve(CHECKPOINT_URL, checkpoint)
sam = sam_model_registry[MODEL_TYPE](checkpoint=checkpoint).to(device)
mask_generator = SamAutomaticMaskGenerator(sam)
return mask_generator
@lru_cache
def load_clip(
name: str = "ViT-B/32",
) -> Tuple[torch.nn.Module, Callable[[PIL.Image.Image], torch.Tensor]]:
model, preprocess = clip.load(name, device=device)
return model.to(device), preprocess
def adjust_image_size(image: np.ndarray) -> np.ndarray:
height, width = image.shape[:2]
if height > width:
if height > MAX_HEIGHT:
height, width = MAX_HEIGHT, int(MAX_HEIGHT / height * width)
else:
if width > MAX_WIDTH:
height, width = int(MAX_WIDTH / width * height), MAX_WIDTH
image = cv2.resize(image, (width, height))
return image
@torch.no_grad()
def get_score(crop: PIL.Image.Image, texts: List[str]) -> torch.Tensor:
model, preprocess = load_clip()
preprocessed = preprocess(crop).unsqueeze(0).to(device)
tokens = clip.tokenize(texts).to(device)
logits_per_image, _ = model(preprocessed, tokens)
similarity = logits_per_image.softmax(-1).cpu()
return similarity[0, 0]
def crop_image(image: np.ndarray, mask: Dict[str, Any]) -> PIL.Image.Image:
x, y, w, h = mask["bbox"]
masked = image * np.expand_dims(mask["segmentation"], -1)
crop = masked[y : y + h, x : x + w]
if h > w:
top, bottom, left, right = 0, 0, (h - w) // 2, (h - w) // 2
else:
top, bottom, left, right = (w - h) // 2, (w - h) // 2, 0, 0
# padding
crop = cv2.copyMakeBorder(
crop,
top,
bottom,
left,
right,
cv2.BORDER_CONSTANT,
value=(0, 0, 0),
)
crop = PIL.Image.fromarray(crop)
return crop
def get_texts(query: str) -> List[str]:
return [f"a picture of {query}", "a picture of background"]
def filter_masks(
image: np.ndarray,
masks: List[Dict[str, Any]],
predicted_iou_threshold: float,
stability_score_threshold: float,
query: str,
clip_threshold: float,
) -> List[Dict[str, Any]]:
filtered_masks: List[Dict[str, Any]] = []
for mask in sorted(masks, key=lambda mask: mask["area"])[-TOP_K_OBJ:]:
if (
mask["predicted_iou"] < predicted_iou_threshold
or mask["stability_score"] < stability_score_threshold
or image.shape[:2] != mask["segmentation"].shape[:2]
or query
and get_score(crop_image(image, mask), get_texts(query)) < clip_threshold
):
continue
filtered_masks.append(mask)
return filtered_masks
def draw_masks(
image: np.ndarray, masks: List[np.ndarray], alpha: float = 0.7
) -> np.ndarray:
for mask in masks:
color = [randint(127, 255) for _ in range(3)]
# draw mask overlay
colored_mask = np.expand_dims(mask["segmentation"], 0).repeat(3, axis=0)
colored_mask = np.moveaxis(colored_mask, 0, -1)
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
image_overlay = masked.filled()
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
# draw contour
contours, _ = cv2.findContours(
np.uint8(mask["segmentation"]), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cv2.drawContours(image, contours, -1, (0, 0, 255), 2)
return image
def segment(
predicted_iou_threshold: float,
stability_score_threshold: float,
clip_threshold: float,
image_path: str,
query: str,
) -> PIL.ImageFile.ImageFile:
mask_generator = load_mask_generator()
image = cv2.imread(image_path, cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# reduce the size to save gpu memory
image = adjust_image_size(image)
masks = mask_generator.generate(image)
masks = filter_masks(
image,
masks,
predicted_iou_threshold,
stability_score_threshold,
query,
clip_threshold,
)
image = draw_masks(image, masks)
image = PIL.Image.fromarray(image)
return image
demo = gr.Interface(
fn=segment,
inputs=[
gr.Slider(0, 1, value=0.9, label="predicted_iou_threshold"),
gr.Slider(0, 1, value=0.8, label="stability_score_threshold"),
gr.Slider(0, 1, value=0.85, label="clip_threshold"),
gr.Image(type="filepath"),
"text",
],
outputs="image",
allow_flagging="never",
title="Segment Anything with CLIP",
examples=[
[
0.9,
0.8,
0.99,
os.path.join(os.path.dirname(__file__), "examples/dog.jpg"),
"dog",
],
[
0.9,
0.8,
0.75,
os.path.join(os.path.dirname(__file__), "examples/city.jpg"),
"building",
],
[
0.9,
0.8,
0.998,
os.path.join(os.path.dirname(__file__), "examples/food.jpg"),
"strawberry",
],
[
0.9,
0.8,
0.75,
os.path.join(os.path.dirname(__file__), "examples/horse.jpg"),
"horse",
],
[
0.9,
0.8,
0.99,
os.path.join(os.path.dirname(__file__), "examples/bears.jpg"),
"bear",
],
[
0.9,
0.8,
0.99,
os.path.join(os.path.dirname(__file__), "examples/cats.jpg"),
"cat",
],
[
0.9,
0.8,
0.99,
os.path.join(os.path.dirname(__file__), "examples/fish.jpg"),
"fish",
],
],
)
if __name__ == "__main__":
demo.launch()