Spaces:
Runtime error
Runtime error
Add threshold
Browse files
app.py
CHANGED
@@ -1,18 +1,19 @@
|
|
1 |
import os
|
2 |
-
import PIL
|
3 |
from functools import lru_cache
|
4 |
-
|
5 |
from random import randint
|
6 |
-
import
|
|
|
7 |
import cv2
|
8 |
-
import
|
9 |
import numpy as np
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
CHECKPOINT_PATH = "sam_vit_h_4b8939.pth"
|
14 |
MODEL_TYPE = "default"
|
15 |
MAX_WIDTH = MAX_HEIGHT = 800
|
|
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
|
18 |
|
@@ -32,37 +33,63 @@ def adjust_image_size(image: np.ndarray) -> np.ndarray:
|
|
32 |
if width > MAX_WIDTH:
|
33 |
height, width = int(MAX_WIDTH / width * height), MAX_WIDTH
|
34 |
image = cv2.resize(image, (width, height))
|
35 |
-
print(image.shape)
|
36 |
return image
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def draw_masks(
|
40 |
image: np.ndarray, masks: List[np.ndarray], alpha: float = 0.7
|
41 |
) -> np.ndarray:
|
42 |
for mask in masks:
|
43 |
color = [randint(127, 255) for _ in range(3)]
|
44 |
-
segmentation = mask["segmentation"]
|
45 |
|
46 |
# draw mask overlay
|
47 |
-
|
48 |
-
|
49 |
-
masked = np.ma.MaskedArray(image, mask=
|
50 |
image_overlay = masked.filled()
|
51 |
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
|
52 |
|
53 |
# draw contour
|
54 |
contours, _ = cv2.findContours(
|
55 |
-
np.uint8(
|
56 |
)
|
57 |
cv2.drawContours(image, contours, -1, (255, 0, 0), 2)
|
58 |
return image
|
59 |
|
60 |
|
61 |
-
def segment(
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
mask_generator = load_mask_generator()
|
63 |
# reduce the size to save gpu memory
|
64 |
image = adjust_image_size(cv2.imread(image_path))
|
65 |
masks = mask_generator.generate(image)
|
|
|
|
|
|
|
66 |
image = draw_masks(image, masks)
|
67 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
68 |
image = PIL.Image.fromarray(np.uint8(image)).convert("RGB")
|
@@ -71,15 +98,45 @@ def segment(image_path: str, query: str) -> PIL.ImageFile.ImageFile:
|
|
71 |
|
72 |
demo = gr.Interface(
|
73 |
fn=segment,
|
74 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
outputs="image",
|
76 |
allow_flagging="never",
|
77 |
title="Segment Anything with CLIP",
|
78 |
examples=[
|
79 |
-
[
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
],
|
84 |
)
|
85 |
|
|
|
1 |
import os
|
|
|
2 |
from functools import lru_cache
|
|
|
3 |
from random import randint
|
4 |
+
from typing import Dict, List
|
5 |
+
|
6 |
import cv2
|
7 |
+
import gradio as gr
|
8 |
import numpy as np
|
9 |
+
import PIL
|
10 |
+
import torch
|
11 |
+
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
|
12 |
|
13 |
CHECKPOINT_PATH = "sam_vit_h_4b8939.pth"
|
14 |
MODEL_TYPE = "default"
|
15 |
MAX_WIDTH = MAX_HEIGHT = 800
|
16 |
+
THRESHOLD = 0.05
|
17 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
|
19 |
|
|
|
33 |
if width > MAX_WIDTH:
|
34 |
height, width = int(MAX_WIDTH / width * height), MAX_WIDTH
|
35 |
image = cv2.resize(image, (width, height))
|
|
|
36 |
return image
|
37 |
|
38 |
|
39 |
+
def filter_masks(
|
40 |
+
masks: List[Dict[str, np.ndarray]],
|
41 |
+
predicted_iou_threshold: float,
|
42 |
+
stability_score_threshold: float,
|
43 |
+
query: str,
|
44 |
+
clip_threshold: float,
|
45 |
+
) -> List[np.ndarray]:
|
46 |
+
filtered_masks: List[Dict[str, np.ndarray]] = []
|
47 |
+
for mask in masks:
|
48 |
+
if (
|
49 |
+
mask["predicted_iou"] < predicted_iou_threshold
|
50 |
+
or mask["stability_score"] < stability_score_threshold
|
51 |
+
):
|
52 |
+
continue
|
53 |
+
filtered_masks.append(mask)
|
54 |
+
|
55 |
+
return [mask["segmentation"] for mask in filtered_masks]
|
56 |
+
|
57 |
+
|
58 |
def draw_masks(
|
59 |
image: np.ndarray, masks: List[np.ndarray], alpha: float = 0.7
|
60 |
) -> np.ndarray:
|
61 |
for mask in masks:
|
62 |
color = [randint(127, 255) for _ in range(3)]
|
|
|
63 |
|
64 |
# draw mask overlay
|
65 |
+
colored_mask = np.expand_dims(mask, 0).repeat(3, axis=0)
|
66 |
+
colored_mask = np.moveaxis(colored_mask, 0, -1)
|
67 |
+
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
|
68 |
image_overlay = masked.filled()
|
69 |
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
|
70 |
|
71 |
# draw contour
|
72 |
contours, _ = cv2.findContours(
|
73 |
+
np.uint8(mask), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
74 |
)
|
75 |
cv2.drawContours(image, contours, -1, (255, 0, 0), 2)
|
76 |
return image
|
77 |
|
78 |
|
79 |
+
def segment(
|
80 |
+
predicted_iou_threshold: float,
|
81 |
+
stability_score_threshold: float,
|
82 |
+
clip_threshold: float,
|
83 |
+
image_path: str,
|
84 |
+
query: str,
|
85 |
+
) -> PIL.ImageFile.ImageFile:
|
86 |
mask_generator = load_mask_generator()
|
87 |
# reduce the size to save gpu memory
|
88 |
image = adjust_image_size(cv2.imread(image_path))
|
89 |
masks = mask_generator.generate(image)
|
90 |
+
masks = filter_masks(
|
91 |
+
masks, predicted_iou_threshold, stability_score_threshold, query, clip_threshold
|
92 |
+
)
|
93 |
image = draw_masks(image, masks)
|
94 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
95 |
image = PIL.Image.fromarray(np.uint8(image)).convert("RGB")
|
|
|
98 |
|
99 |
demo = gr.Interface(
|
100 |
fn=segment,
|
101 |
+
inputs=[
|
102 |
+
gr.Slider(0, 1, value=0.9, label="predicted_iou_threshold"),
|
103 |
+
gr.Slider(0, 1, value=0.8, label="stability_score_threshold"),
|
104 |
+
gr.Slider(0, 1, value=0.05, label="clip_threshold"),
|
105 |
+
gr.Image(type="filepath"),
|
106 |
+
"text",
|
107 |
+
],
|
108 |
outputs="image",
|
109 |
allow_flagging="never",
|
110 |
title="Segment Anything with CLIP",
|
111 |
examples=[
|
112 |
+
[
|
113 |
+
0.9,
|
114 |
+
0.8,
|
115 |
+
0.05,
|
116 |
+
os.path.join(os.path.dirname(__file__), "examples/dog.jpg"),
|
117 |
+
"",
|
118 |
+
],
|
119 |
+
[
|
120 |
+
0.9,
|
121 |
+
0.8,
|
122 |
+
0.05,
|
123 |
+
os.path.join(os.path.dirname(__file__), "examples/city.jpg"),
|
124 |
+
"",
|
125 |
+
],
|
126 |
+
[
|
127 |
+
0.9,
|
128 |
+
0.8,
|
129 |
+
0.05,
|
130 |
+
os.path.join(os.path.dirname(__file__), "examples/food.jpg"),
|
131 |
+
"",
|
132 |
+
],
|
133 |
+
[
|
134 |
+
0.9,
|
135 |
+
0.8,
|
136 |
+
0.05,
|
137 |
+
os.path.join(os.path.dirname(__file__), "examples/horse.jpg"),
|
138 |
+
"",
|
139 |
+
],
|
140 |
],
|
141 |
)
|
142 |
|