Spaces:
Running
Running
Clement Vachet
commited on
Commit
·
ffdfdcd
1
Parent(s):
9b658e7
Add detection python files
Browse files- detect_pipeline.py +6 -0
- detect_torch.py +115 -0
- detect_transformers.py +26 -0
detect_pipeline.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
detector = pipeline(model="facebook/detr-resnet-50", revision="no_timm")
|
4 |
+
result = detector("http://images.cocodataset.org/val2017/000000039769.jpg")
|
5 |
+
print(result)
|
6 |
+
# x, y are expressed relative to the top left hand corner.
|
detect_torch.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Main file
|
2 |
+
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
|
7 |
+
|
8 |
+
import torch
|
9 |
+
# from torch import nn
|
10 |
+
# from torchvision.models import resnet50
|
11 |
+
import torchvision.transforms as T
|
12 |
+
torch.set_grad_enabled(False);
|
13 |
+
|
14 |
+
# COCO classes
|
15 |
+
CLASSES = [
|
16 |
+
'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
17 |
+
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A',
|
18 |
+
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
|
19 |
+
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack',
|
20 |
+
'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
|
21 |
+
'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
|
22 |
+
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass',
|
23 |
+
'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
|
24 |
+
'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
|
25 |
+
'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A',
|
26 |
+
'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
|
27 |
+
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A',
|
28 |
+
'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
|
29 |
+
'toothbrush'
|
30 |
+
]
|
31 |
+
|
32 |
+
# colors for visualization
|
33 |
+
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
|
34 |
+
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
|
35 |
+
|
36 |
+
# standard PyTorch mean-std input image normalization
|
37 |
+
transform = T.Compose([
|
38 |
+
T.Resize(800),
|
39 |
+
T.ToTensor(),
|
40 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
41 |
+
])
|
42 |
+
|
43 |
+
# for output bounding box post-processing
|
44 |
+
# Convert center of bounding box to relative image coordinates
|
45 |
+
# from (cx, cy, w, h) to (x0, y0, x1, y1)
|
46 |
+
def box_cxcywh_to_xyxy(x):
|
47 |
+
x_c, y_c, w, h = x.unbind(1)
|
48 |
+
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
|
49 |
+
(x_c + 0.5 * w), (y_c + 0.5 * h)]
|
50 |
+
return torch.stack(b, dim=1)
|
51 |
+
|
52 |
+
# convert predictions to absolute image coordinates
|
53 |
+
def rescale_bboxes(out_bbox, size):
|
54 |
+
img_w, img_h = size
|
55 |
+
b = box_cxcywh_to_xyxy(out_bbox)
|
56 |
+
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
|
57 |
+
return b
|
58 |
+
|
59 |
+
def plot_results(pil_img, prob, boxes):
|
60 |
+
plt.figure(figsize=(8,5))
|
61 |
+
plt.imshow(pil_img)
|
62 |
+
ax = plt.gca()
|
63 |
+
colors = COLORS * 100
|
64 |
+
for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
|
65 |
+
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
|
66 |
+
fill=False, color=c, linewidth=3))
|
67 |
+
cl = p.argmax()
|
68 |
+
text = f'{CLASSES[cl]}: {p[cl]:0.2f}'
|
69 |
+
ax.text(xmin, ymin, text, fontsize=15,
|
70 |
+
bbox=dict(facecolor='yellow', alpha=0.5))
|
71 |
+
plt.axis('off')
|
72 |
+
plt.show()
|
73 |
+
|
74 |
+
|
75 |
+
def detect(im, model, transform):
|
76 |
+
# mean-std normalize the input image (batch-size: 1)
|
77 |
+
img = transform(im).unsqueeze(0)
|
78 |
+
|
79 |
+
# demo model only support by default images with aspect ratio between 0.5 and 2
|
80 |
+
# if you want to use images with an aspect ratio outside this range
|
81 |
+
# rescale your image so that the maximum size is at most 1333 for best results
|
82 |
+
assert img.shape[-2] <= 1600 and img.shape[
|
83 |
+
-1] <= 1600, 'demo model only supports images up to 1600 pixels on each side'
|
84 |
+
|
85 |
+
# propagate through the model
|
86 |
+
outputs = model(img)
|
87 |
+
|
88 |
+
# keep only predictions with 0.9+ confidence
|
89 |
+
probas = outputs['pred_logits'].softmax(-1)[0, :, :-1]
|
90 |
+
keep = probas.max(-1).values > 0.9
|
91 |
+
|
92 |
+
# convert boxes from [0; 1] to image scales
|
93 |
+
bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size)
|
94 |
+
return probas[keep], bboxes_scaled
|
95 |
+
|
96 |
+
def load_model():
|
97 |
+
model = torch.hub.load('facebookresearch/detr', 'detr_resnet50', pretrained=True)
|
98 |
+
model.eval();
|
99 |
+
return model
|
100 |
+
|
101 |
+
def main():
|
102 |
+
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
103 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
104 |
+
model = load_model()
|
105 |
+
scores, boxes = detect(im, model, transform)
|
106 |
+
print('len(scores)',len(scores))
|
107 |
+
print('scores[0].shape', scores[0].shape)
|
108 |
+
print('scores', scores)
|
109 |
+
print('len(boxes)',len(boxes))
|
110 |
+
print('boxes',boxes)
|
111 |
+
plot_results(im, scores, boxes)
|
112 |
+
|
113 |
+
if __name__ == "__main__":
|
114 |
+
main()
|
115 |
+
|
detect_transformers.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
|
6 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
7 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
8 |
+
|
9 |
+
# you can specify the revision tag if you don't want the timm dependency
|
10 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
11 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
|
12 |
+
|
13 |
+
inputs = processor(images=image, return_tensors="pt")
|
14 |
+
outputs = model(**inputs)
|
15 |
+
|
16 |
+
# convert outputs (bounding boxes and class logits) to COCO API
|
17 |
+
# let's only keep detections with score > 0.9
|
18 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
19 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
20 |
+
|
21 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
22 |
+
box = [round(i, 2) for i in box.tolist()]
|
23 |
+
print(
|
24 |
+
f"Detected {model.config.id2label[label.item()]} with confidence "
|
25 |
+
f"{round(score.item(), 3)} at location {box}"
|
26 |
+
)
|