# Object detection Aim: AI-driven object detection (on COCO image dataset) ## Direct object detection via python scripts ### 1. Use of torch library > python detect_torch.py ### 2. Use of transformers library > python detect_transformers.py ### 3. Use of HuggingFace pipeline library > python detect_pipeline.py ## Object detection via User Interface Use of Gradio library for web interface Command line: > python app.py Note: The Gradio app should now be accessible at http://localhost:7860 ## Object detection via Gradio client API Note: Use of existing Gradio server (running locally, in a Docker container, or in the cloud as a HuggingFace space or AWS) ### 1. Creation of docker container Command lines: > sudo docker build -t gradio-app . > sudo docker run -p 7860:7860 gradio-app The Gradio app should now be accessible at http://localhost:7860 ### 2. Direct inference via API Command line: > python inference_API.py