from gradio_client import Client, handle_file from PIL import Image import matplotlib.pyplot as plt # Parameters Server_URL = "cvachet/object_detection_gradio" Image_URL = 'http://images.cocodataset.org/val2017/000000039769.jpg' # URL to client server (e.g. local server, docker container or AWS ECS) client = Client(Server_URL) # Call to API result = client.predict( image=handle_file(Image_URL), model_id="hustvl/yolos-small", threshold=0.9, api_name="/detect" ) # Result is an image.webp file print(result) # Display image via matplotlib img = Image.open(result).convert("RGB") plt.figure(figsize=(8, 5)) plt.imshow(img) plt.axis('off') plt.show()