File size: 29,957 Bytes
f53b39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
import contextlib
import cv2
from dust3r.cloud_opt_flow.base_opt import BasePCOptimizer, edge_str
from dust3r.cloud_opt_flow.pair_viewer import PairViewer
from dust3r.utils.geometry import xy_grid, geotrf, depthmap_to_pts3d
from dust3r.utils.device import to_cpu, to_numpy
from dust3r.utils.goem_opt import DepthBasedWarping, OccMask, WarpImage, depth_regularization_si_weighted, tum_to_pose_matrix
from third_party.raft import load_RAFT
from sam2.build_sam import build_sam2_video_predictor
sam2_checkpoint = "third_party/sam2/checkpoints/sam2.1_hiera_large.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
def smooth_L1_loss_fn(estimate, gt, mask, beta=1.0, per_pixel_thre=50.):
loss_raw_shape = F.smooth_l1_loss(estimate*mask, gt*mask, beta=beta, reduction='none')
if per_pixel_thre > 0:
per_pixel_mask = (loss_raw_shape < per_pixel_thre) * mask
else:
per_pixel_mask = mask
return torch.sum(loss_raw_shape * per_pixel_mask) / torch.sum(per_pixel_mask)
def mse_loss_fn(estimate, gt, mask):
v = torch.sum((estimate*mask-gt*mask)**2) / torch.sum(mask)
return v # , v.item()
class PointCloudOptimizer(BasePCOptimizer):
""" Optimize a global scene, given a list of pairwise observations.
Graph node: images
Graph edges: observations = (pred1, pred2)
"""
def __init__(self, *args, optimize_pp=False, focal_break=20, shared_focal=False, flow_loss_fn='smooth_l1', flow_loss_weight=0.0,
depth_regularize_weight=0.0, num_total_iter=300, temporal_smoothing_weight=0, translation_weight=0.1, flow_loss_start_epoch=0.15, flow_loss_thre=50,
sintel_ckpt=False, use_self_mask=False, pxl_thre=50, sam2_mask_refine=True, motion_mask_thre=0.35, **kwargs):
super().__init__(*args, **kwargs)
self.has_im_poses = True # by definition of this class
self.focal_break = focal_break
self.num_total_iter = num_total_iter
self.temporal_smoothing_weight = temporal_smoothing_weight
self.translation_weight = translation_weight
self.flow_loss_flag = False
self.flow_loss_start_epoch = flow_loss_start_epoch
self.flow_loss_thre = flow_loss_thre
self.optimize_pp = optimize_pp
self.pxl_thre = pxl_thre
self.motion_mask_thre = motion_mask_thre
# adding thing to optimize
self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes) # log(depth)
self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs)) # camera poses
self.shared_focal = shared_focal
if self.shared_focal:
self.im_focals = nn.ParameterList(torch.FloatTensor(
[self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes[:1]) # camera intrinsics
else:
self.im_focals = nn.ParameterList(torch.FloatTensor(
[self.focal_break*np.log(max(H, W))]) for H, W in self.imshapes) # camera intrinsics
self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs)) # camera intrinsics
self.im_pp.requires_grad_(optimize_pp)
self.imshape = self.imshapes[0]
im_areas = [h*w for h, w in self.imshapes]
self.max_area = max(im_areas)
# adding thing to optimize
self.im_depthmaps = ParameterStack(self.im_depthmaps, is_param=True, fill=self.max_area) #(num_imgs, H*W)
self.im_poses = ParameterStack(self.im_poses, is_param=True)
self.im_focals = ParameterStack(self.im_focals, is_param=True)
self.im_pp = ParameterStack(self.im_pp, is_param=True)
self.register_buffer('_pp', torch.tensor([(w/2, h/2) for h, w in self.imshapes]))
self.register_buffer('_grid', ParameterStack(
[xy_grid(W, H, device=self.device) for H, W in self.imshapes], fill=self.max_area))
# pre-compute pixel weights
self.register_buffer('_weight_i', ParameterStack(
[self.conf_trf(self.conf_i[i_j]) for i_j in self.str_edges], fill=self.max_area))
self.register_buffer('_weight_j', ParameterStack(
[self.conf_trf(self.conf_j[i_j]) for i_j in self.str_edges], fill=self.max_area))
# precompute aa
self.register_buffer('_stacked_pred_i', ParameterStack(self.pred_i, self.str_edges, fill=self.max_area))
self.register_buffer('_stacked_pred_j', ParameterStack(self.pred_j, self.str_edges, fill=self.max_area))
self.register_buffer('_ei', torch.tensor([i for i, j in self.edges]))
self.register_buffer('_ej', torch.tensor([j for i, j in self.edges]))
self.total_area_i = sum([im_areas[i] for i, j in self.edges])
self.total_area_j = sum([im_areas[j] for i, j in self.edges])
self.depth_wrapper = DepthBasedWarping()
self.backward_warper = WarpImage()
self.depth_regularizer = depth_regularization_si_weighted
if flow_loss_fn == 'smooth_l1':
self.flow_loss_fn = smooth_L1_loss_fn
elif flow_loss_fn == 'mse':
self.low_loss_fn = mse_loss_fn
self.flow_loss_weight = flow_loss_weight
self.depth_regularize_weight = depth_regularize_weight
if self.flow_loss_weight > 0:
self.flow_ij, self.flow_ji, self.flow_valid_mask_i, self.flow_valid_mask_j = self.get_flow(sintel_ckpt) # (num_pairs, 2, H, W)
if use_self_mask: self.get_motion_mask_from_pairs(*args)
# turn off the gradient for the flow
self.flow_ij.requires_grad_(False)
self.flow_ji.requires_grad_(False)
self.flow_valid_mask_i.requires_grad_(False)
self.flow_valid_mask_j.requires_grad_(False)
if sam2_mask_refine:
with torch.no_grad():
self.refine_motion_mask_w_sam2()
else:
self.sam2_dynamic_masks = None
def get_flow(self, sintel_ckpt=False): #TODO: test with gt flow
print('precomputing flow...')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
get_valid_flow_mask = OccMask(th=3.0)
pair_imgs = [np.stack(self.imgs)[self._ei], np.stack(self.imgs)[self._ej]]
sintel_ckpt=False
flow_net = load_RAFT() if sintel_ckpt else load_RAFT("third_party/RAFT/models/Tartan-C-T432x960-M.pth")
flow_net = flow_net.to(device)
flow_net.eval()
if len(pair_imgs[0].shape)==3:
pair_imgs = [pair_imgs[0][None], pair_imgs[1][None]]
#print(self._ei)
with torch.no_grad():
chunk_size = 12
flow_ij = []
flow_ji = []
num_pairs = len(pair_imgs[0])
for i in tqdm(range(0, num_pairs, chunk_size)):
end_idx = min(i + chunk_size, num_pairs)
imgs_ij = [torch.tensor(pair_imgs[0][i:end_idx]).float().to(device),
torch.tensor(pair_imgs[1][i:end_idx]).float().to(device)]
#print(imgs_ij[0].shape)
flow_ij.append(flow_net(imgs_ij[0].permute(0, 3, 1, 2) * 255,
imgs_ij[1].permute(0, 3, 1, 2) * 255,
iters=20, test_mode=True)[1])
flow_ji.append(flow_net(imgs_ij[1].permute(0, 3, 1, 2) * 255,
imgs_ij[0].permute(0, 3, 1, 2) * 255,
iters=20, test_mode=True)[1])
flow_ij = torch.cat(flow_ij, dim=0)
flow_ji = torch.cat(flow_ji, dim=0)
valid_mask_i = get_valid_flow_mask(flow_ij, flow_ji)
valid_mask_j = get_valid_flow_mask(flow_ji, flow_ij)
print('flow precomputed')
# delete the flow net
if flow_net is not None: del flow_net
return flow_ij, flow_ji, valid_mask_i, valid_mask_j
def get_motion_mask_from_pairs(self, view1, view2, pred1, pred2):
assert self.is_symmetrized, 'only support symmetric case'
symmetry_pairs_idx = [(i, i+len(self.edges)//2) for i in range(len(self.edges)//2)]
intrinsics_i = []
intrinsics_j = []
R_i = []
R_j = []
T_i = []
T_j = []
depth_maps_i = []
depth_maps_j = []
for i, j in tqdm(symmetry_pairs_idx):
new_view1 = {}
new_view2 = {}
for key in view1.keys():
if isinstance(view1[key], list):
new_view1[key] = [view1[key][i], view1[key][j]]
new_view2[key] = [view2[key][i], view2[key][j]]
elif isinstance(view1[key], torch.Tensor):
new_view1[key] = torch.stack([view1[key][i], view1[key][j]])
new_view2[key] = torch.stack([view2[key][i], view2[key][j]])
new_view1['idx'] = [0, 1]
new_view2['idx'] = [1, 0]
new_pred1 = {}
new_pred2 = {}
for key in pred1.keys():
if isinstance(pred1[key], list):
new_pred1[key] = [pred1[key][i], pred1[key][j]]
elif isinstance(pred1[key], torch.Tensor):
new_pred1[key] = torch.stack([pred1[key][i], pred1[key][j]])
for key in pred2.keys():
if isinstance(pred2[key], list):
new_pred2[key] = [pred2[key][i], pred2[key][j]]
elif isinstance(pred2[key], torch.Tensor):
new_pred2[key] = torch.stack([pred2[key][i], pred2[key][j]])
pair_viewer = PairViewer(new_view1, new_view2, new_pred1, new_pred2, verbose=False)
intrinsics_i.append(pair_viewer.get_intrinsics()[0])
intrinsics_j.append(pair_viewer.get_intrinsics()[1])
R_i.append(pair_viewer.get_im_poses()[0][:3, :3])
R_j.append(pair_viewer.get_im_poses()[1][:3, :3])
T_i.append(pair_viewer.get_im_poses()[0][:3, 3:])
T_j.append(pair_viewer.get_im_poses()[1][:3, 3:])
depth_maps_i.append(pair_viewer.get_depthmaps()[0])
depth_maps_j.append(pair_viewer.get_depthmaps()[1])
self.intrinsics_i = torch.stack(intrinsics_i).to(self.flow_ij.device)
self.intrinsics_j = torch.stack(intrinsics_j).to(self.flow_ij.device)
self.R_i = torch.stack(R_i).to(self.flow_ij.device)
self.R_j = torch.stack(R_j).to(self.flow_ij.device)
self.T_i = torch.stack(T_i).to(self.flow_ij.device)
self.T_j = torch.stack(T_j).to(self.flow_ij.device)
self.depth_maps_i = torch.stack(depth_maps_i).unsqueeze(1).to(self.flow_ij.device)
self.depth_maps_j = torch.stack(depth_maps_j).unsqueeze(1).to(self.flow_ij.device)
# self.depth_maps_i[self.depth_maps_i>0.7] = 0.7
# self.depth_maps_j[self.depth_maps_j>0.7] = 0.7
#cv2.imwrite('1.png', self.depth_maps_i[0,0].cpu().numpy()*255)
#print(self.depth_maps_i,self.depth_maps_i.shape)
try:
ego_flow_1_2, _ = self.depth_wrapper(self.R_i, self.T_i, self.R_j, self.T_j, 1 / (self.depth_maps_i + 1e-6), self.intrinsics_j, torch.linalg.inv(self.intrinsics_i))
except Exception as e:
ego_flow_1_2, _ = self.depth_wrapper(self.R_i, self.T_i, self.R_j, self.T_j, 1 / (self.depth_maps_i + 1e-6), self.intrinsics_j, torch.linalg.pinv(self.intrinsics_i))
try:
ego_flow_2_1, _ = self.depth_wrapper(self.R_j, self.T_j, self.R_i, self.T_i, 1 / (self.depth_maps_j + 1e-6), self.intrinsics_i, torch.linalg.inv(self.intrinsics_j))
except Exception as e:
ego_flow_2_1, _ = self.depth_wrapper(self.R_j, self.T_j, self.R_i, self.T_i, 1 / (self.depth_maps_j + 1e-6), self.intrinsics_i, torch.linalg.pinv(self.intrinsics_j))
err_map_i = torch.norm(ego_flow_1_2[:, :2, ...] - self.flow_ij[:len(symmetry_pairs_idx)], dim=1)
err_map_j = torch.norm(ego_flow_2_1[:, :2, ...] - self.flow_ji[:len(symmetry_pairs_idx)], dim=1)
# normalize the error map for each pair
err_map_i = (err_map_i - err_map_i.amin(dim=(1, 2), keepdim=True)) / (err_map_i.amax(dim=(1, 2), keepdim=True) - err_map_i.amin(dim=(1, 2), keepdim=True))
err_map_j = (err_map_j - err_map_j.amin(dim=(1, 2), keepdim=True)) / (err_map_j.amax(dim=(1, 2), keepdim=True) - err_map_j.amin(dim=(1, 2), keepdim=True))
self.dynamic_masks = [[] for _ in range(self.n_imgs)]
for i, j in symmetry_pairs_idx:
i_idx = self._ei[i]
j_idx = self._ej[i]
self.dynamic_masks[i_idx].append(err_map_i[i])
self.dynamic_masks[j_idx].append(err_map_j[i])
for i in range(self.n_imgs):
self.dynamic_masks[i] = torch.stack(self.dynamic_masks[i]).mean(dim=0) > self.motion_mask_thre
def refine_motion_mask_w_sam2(self):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Save previous TF32 settings
if device == 'cuda':
prev_allow_tf32 = torch.backends.cuda.matmul.allow_tf32
prev_allow_cudnn_tf32 = torch.backends.cudnn.allow_tf32
# Enable TF32 for Ampere GPUs
if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
try:
autocast_dtype = torch.bfloat16 if device == 'cuda' else torch.float32
with torch.autocast(device_type=device, dtype=autocast_dtype):
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device=device)
frame_tensors = torch.from_numpy(np.array((self.imgs))).permute(0, 3, 1, 2).to(device)
inference_state = predictor.init_state(video_path=frame_tensors)
mask_list = [self.dynamic_masks[i] for i in range(self.n_imgs)]
ann_obj_id = 1
self.sam2_dynamic_masks = [[] for _ in range(self.n_imgs)]
# Process even frames
predictor.reset_state(inference_state)
for idx, mask in enumerate(mask_list):
if idx % 2 == 1:
_, out_obj_ids, out_mask_logits = predictor.add_new_mask(
inference_state,
frame_idx=idx,
obj_id=ann_obj_id,
mask=mask,
)
video_segments = {}
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state, start_frame_idx=0):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
for out_frame_idx in range(self.n_imgs):
if out_frame_idx % 2 == 0:
self.sam2_dynamic_masks[out_frame_idx] = video_segments[out_frame_idx][ann_obj_id]
# Process odd frames
predictor.reset_state(inference_state)
for idx, mask in enumerate(mask_list):
if idx % 2 == 0:
_, out_obj_ids, out_mask_logits = predictor.add_new_mask(
inference_state,
frame_idx=idx,
obj_id=ann_obj_id,
mask=mask,
)
video_segments = {}
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state, start_frame_idx=0):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
for out_frame_idx in range(self.n_imgs):
if out_frame_idx % 2 == 1:
self.sam2_dynamic_masks[out_frame_idx] = video_segments[out_frame_idx][ann_obj_id]
# Update dynamic masks
for i in range(self.n_imgs):
self.sam2_dynamic_masks[i] = torch.from_numpy(self.sam2_dynamic_masks[i][0]).to(device)
self.dynamic_masks[i] = self.dynamic_masks[i].to(device)
self.dynamic_masks[i] = self.dynamic_masks[i] | self.sam2_dynamic_masks[i]
# Clean up
del predictor
finally:
# Restore previous TF32 settings
if device == 'cuda':
torch.backends.cuda.matmul.allow_tf32 = prev_allow_tf32
torch.backends.cudnn.allow_tf32 = prev_allow_cudnn_tf32
def _check_all_imgs_are_selected(self, msk):
self.msk = torch.from_numpy(np.array(msk, dtype=bool)).to(self.device)
assert np.all(self._get_msk_indices(msk) == np.arange(self.n_imgs)), 'incomplete mask!'
pass
def preset_pose(self, known_poses, pose_msk=None, requires_grad=False): # cam-to-world
self._check_all_imgs_are_selected(pose_msk)
if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2:
known_poses = [known_poses]
if known_poses.shape[-1] == 7: # xyz wxyz
known_poses = [tum_to_pose_matrix(pose) for pose in known_poses]
for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses):
if self.verbose:
print(f' (setting pose #{idx} = {pose[:3,3]})')
self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose)))
# normalize scale if there's less than 1 known pose
n_known_poses = sum((p.requires_grad is False) for p in self.im_poses)
self.norm_pw_scale = (n_known_poses <= 1)
if len(known_poses) == self.n_imgs:
if requires_grad:
self.im_poses.requires_grad_(True)
else:
self.im_poses.requires_grad_(False)
self.norm_pw_scale = False
def preset_intrinsics(self, known_intrinsics, msk=None):
if isinstance(known_intrinsics, torch.Tensor) and known_intrinsics.ndim == 2:
known_intrinsics = [known_intrinsics]
for K in known_intrinsics:
assert K.shape == (3, 3)
self.preset_focal([K.diagonal()[:2].mean() for K in known_intrinsics], msk)
if self.optimize_pp:
self.preset_principal_point([K[:2, 2] for K in known_intrinsics], msk)
def preset_focal(self, known_focals, msk=None, requires_grad=False):
self._check_all_imgs_are_selected(msk)
for idx, focal in zip(self._get_msk_indices(msk), known_focals):
if self.verbose:
print(f' (setting focal #{idx} = {focal})')
self._no_grad(self._set_focal(idx, focal))
if len(known_focals) == self.n_imgs:
if requires_grad:
self.im_focals.requires_grad_(True)
else:
self.im_focals.requires_grad_(False)
def preset_principal_point(self, known_pp, msk=None):
self._check_all_imgs_are_selected(msk)
for idx, pp in zip(self._get_msk_indices(msk), known_pp):
if self.verbose:
print(f' (setting principal point #{idx} = {pp})')
self._no_grad(self._set_principal_point(idx, pp))
self.im_pp.requires_grad_(False)
def _get_msk_indices(self, msk):
if msk is None:
return range(self.n_imgs)
elif isinstance(msk, int):
return [msk]
elif isinstance(msk, (tuple, list)):
return self._get_msk_indices(np.array(msk))
elif msk.dtype in (bool, torch.bool, np.bool_):
assert len(msk) == self.n_imgs
return np.where(msk)[0]
elif np.issubdtype(msk.dtype, np.integer):
return msk
else:
raise ValueError(f'bad {msk=}')
def _no_grad(self, tensor):
assert tensor.requires_grad, 'it must be True at this point, otherwise no modification occurs'
def _set_focal(self, idx, focal, force=False):
param = self.im_focals[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = self.focal_break * np.log(focal)
return param
def get_focals(self):
if self.shared_focal:
log_focals = torch.stack([self.im_focals[0]] * self.n_imgs, dim=0)
else:
log_focals = torch.stack(list(self.im_focals), dim=0)
return (log_focals / self.focal_break).exp()
def get_known_focal_mask(self):
return torch.tensor([not (p.requires_grad) for p in self.im_focals])
def _set_principal_point(self, idx, pp, force=False):
param = self.im_pp[idx]
H, W = self.imshapes[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10
return param
def get_principal_points(self):
return self._pp + 10 * self.im_pp
def get_intrinsics(self):
K = torch.zeros((self.n_imgs, 3, 3), device=self.device)
focals = self.get_focals().flatten()
K[:, 0, 0] = K[:, 1, 1] = focals
K[:, :2, 2] = self.get_principal_points()
K[:, 2, 2] = 1
return K
def get_im_poses(self): # cam to world
cam2world = self._get_poses(self.im_poses)
return cam2world
def _set_depthmap(self, idx, depth, force=False):
depth = _ravel_hw(depth, self.max_area)
param = self.im_depthmaps[idx]
if param.requires_grad or force: # can only init a parameter not already initialized
param.data[:] = depth.log().nan_to_num(neginf=0)
return param
def preset_depthmap(self, known_depthmaps, msk=None, requires_grad=False):
self._check_all_imgs_are_selected(msk)
for idx, depth in zip(self._get_msk_indices(msk), known_depthmaps):
if self.verbose:
print(f' (setting depthmap #{idx})')
self._no_grad(self._set_depthmap(idx, depth))
if len(known_depthmaps) == self.n_imgs:
if requires_grad:
self.im_depthmaps.requires_grad_(True)
else:
self.im_depthmaps.requires_grad_(False)
def _set_init_depthmap(self):
depth_maps = self.get_depthmaps(raw=True)
self.init_depthmap = [dm.detach().clone() for dm in depth_maps]
def get_init_depthmaps(self, raw=False):
res = self.init_depthmap
if not raw:
res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)]
return res
def get_depthmaps(self, raw=False):
res = self.im_depthmaps.exp()
if not raw:
res = [dm[:h*w].view(h, w) for dm, (h, w) in zip(res, self.imshapes)]
return res
def depth_to_pts3d(self):
# Get depths and projection params if not provided
focals = self.get_focals()
pp = self.get_principal_points()
im_poses = self.get_im_poses()
depth = self.get_depthmaps(raw=True)
# get pointmaps in camera frame
rel_ptmaps = _fast_depthmap_to_pts3d(depth, self._grid, focals, pp=pp)
# project to world frame
return geotrf(im_poses, rel_ptmaps)
def depth_to_pts3d_partial(self):
# Get depths and projection params if not provided
focals = self.get_focals()
pp = self.get_principal_points()
im_poses = self.get_im_poses()
depth = self.get_depthmaps()
# convert focal to (1,2,H,W) constant field
def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *self.imshapes[i])
# get pointmaps in camera frame
rel_ptmaps = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[i:i+1])[0] for i in range(im_poses.shape[0])]
# project to world frame
return [geotrf(pose, ptmap) for pose, ptmap in zip(im_poses, rel_ptmaps)]
def get_pts3d(self, raw=False, **kwargs):
res = self.depth_to_pts3d()
if not raw:
res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
return res
def forward(self, epoch=9999):
pw_poses = self.get_pw_poses() # cam-to-world
pw_adapt = self.get_adaptors().unsqueeze(1)
proj_pts3d = self.get_pts3d(raw=True)
# rotate pairwise prediction according to pw_poses
aligned_pred_i = geotrf(pw_poses, pw_adapt * self._stacked_pred_i)
aligned_pred_j = geotrf(pw_poses, pw_adapt * self._stacked_pred_j)
# compute the less
li = self.dist(proj_pts3d[self._ei], aligned_pred_i, weight=self._weight_i).sum() / self.total_area_i
lj = self.dist(proj_pts3d[self._ej], aligned_pred_j, weight=self._weight_j).sum() / self.total_area_j
# camera temporal loss
if self.temporal_smoothing_weight > 0:
temporal_smoothing_loss = self.relative_pose_loss(self.get_im_poses()[:-1], self.get_im_poses()[1:]).sum()
else:
temporal_smoothing_loss = 0
if self.flow_loss_weight > 0 and epoch >= self.num_total_iter * self.flow_loss_start_epoch: # enable flow loss after certain epoch
R_all, T_all = self.get_im_poses()[:,:3].split([3, 1], dim=-1)
R1, T1 = R_all[self._ei], T_all[self._ei]
R2, T2 = R_all[self._ej], T_all[self._ej]
K_all = self.get_intrinsics()
inv_K_all = torch.linalg.inv(K_all)
K_1, inv_K_1 = K_all[self._ei], inv_K_all[self._ei]
K_2, inv_K_2 = K_all[self._ej], inv_K_all[self._ej]
depth_all = torch.stack(self.get_depthmaps(raw=False)).unsqueeze(1)
depth1, depth2 = depth_all[self._ei], depth_all[self._ej]
disp_1, disp_2 = 1 / (depth1 + 1e-6), 1 / (depth2 + 1e-6)
ego_flow_1_2, _ = self.depth_wrapper(R1, T1, R2, T2, disp_1, K_2, inv_K_1)
ego_flow_2_1, _ = self.depth_wrapper(R2, T2, R1, T1, disp_2, K_1, inv_K_2)
dynamic_masks_all = torch.stack(self.dynamic_masks).to(self.device).unsqueeze(1)
dynamic_mask1, dynamic_mask2 = dynamic_masks_all[self._ei], dynamic_masks_all[self._ej]
flow_loss_i = self.flow_loss_fn(ego_flow_1_2[:, :2, ...], self.flow_ij, ~dynamic_mask1, per_pixel_thre=self.pxl_thre)
flow_loss_j = self.flow_loss_fn(ego_flow_2_1[:, :2, ...], self.flow_ji, ~dynamic_mask2, per_pixel_thre=self.pxl_thre)
flow_loss = flow_loss_i + flow_loss_j
print(f'flow loss: {flow_loss.item()}')
if flow_loss.item() > self.flow_loss_thre and self.flow_loss_thre > 0:
flow_loss = 0
self.flow_loss_flag = True
else:
flow_loss = 0
if self.depth_regularize_weight > 0:
init_depthmaps = torch.stack(self.get_init_depthmaps(raw=False)).unsqueeze(1)
depthmaps = torch.stack(self.get_depthmaps(raw=False)).unsqueeze(1)
dynamic_masks_all = torch.stack(self.dynamic_masks).to(self.device).unsqueeze(1)
depth_prior_loss = self.depth_regularizer(depthmaps, init_depthmaps, dynamic_masks_all)
else:
depth_prior_loss = 0
loss = (li + lj) * 1 + self.temporal_smoothing_weight * temporal_smoothing_loss + \
self.flow_loss_weight * flow_loss + self.depth_regularize_weight * depth_prior_loss
return loss
def relative_pose_loss(self, RT1, RT2):
relative_RT = torch.matmul(torch.inverse(RT1), RT2)
rotation_diff = relative_RT[:, :3, :3]
translation_diff = relative_RT[:, :3, 3]
# Frobenius norm for rotation difference
rotation_loss = torch.norm(rotation_diff - (torch.eye(3, device=RT1.device)), dim=(1, 2))
# L2 norm for translation difference
translation_loss = torch.norm(translation_diff, dim=1)
# Combined loss (one can weigh these differently if needed)
pose_loss = rotation_loss + translation_loss * self.translation_weight
return pose_loss
def _fast_depthmap_to_pts3d(depth, pixel_grid, focal, pp):
pp = pp.unsqueeze(1)
focal = focal.unsqueeze(1)
assert focal.shape == (len(depth), 1, 1)
assert pp.shape == (len(depth), 1, 2)
assert pixel_grid.shape == depth.shape + (2,)
depth = depth.unsqueeze(-1)
return torch.cat((depth * (pixel_grid - pp) / focal, depth), dim=-1)
def ParameterStack(params, keys=None, is_param=None, fill=0):
if keys is not None:
params = [params[k] for k in keys]
if fill > 0:
params = [_ravel_hw(p, fill) for p in params]
requires_grad = params[0].requires_grad
assert all(p.requires_grad == requires_grad for p in params)
params = torch.stack(list(params)).float().detach()
if is_param or requires_grad:
params = nn.Parameter(params)
params.requires_grad_(requires_grad)
return params
def _ravel_hw(tensor, fill=0):
# ravel H,W
tensor = tensor.view((tensor.shape[0] * tensor.shape[1],) + tensor.shape[2:])
if len(tensor) < fill:
tensor = torch.cat((tensor, tensor.new_zeros((fill - len(tensor),)+tensor.shape[1:])))
return tensor
def acceptable_focal_range(H, W, minf=0.5, maxf=3.5):
focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515
return minf*focal_base, maxf*focal_base
def apply_mask(img, msk):
img = img.copy()
img[msk] = 0
return img
def ordered_ratio(disp_a, disp_b, mask=None):
ratio_a = torch.maximum(disp_a, disp_b) / \
(torch.minimum(disp_a, disp_b)+1e-5)
if mask is not None:
ratio_a = ratio_a[mask]
return ratio_a - 1 |