File size: 4,216 Bytes
f53b39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Dataloader for preprocessed arkitscenes
# dataset at https://github.com/apple/ARKitScenes - Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License https://github.com/apple/ARKitScenes/tree/main?tab=readme-ov-file#license
# See datasets_preprocess/preprocess_arkitscenes.py
# --------------------------------------------------------
import os.path as osp
import cv2
import numpy as np

from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset
from dust3r.utils.image import imread_cv2


class ARKitScenes(BaseStereoViewDataset):
    def __init__(self, *args, split, ROOT, **kwargs):
        self.ROOT = ROOT
        super().__init__(*args, **kwargs)
        if split == "train":
            self.split = "Training"
        elif split == "test":
            self.split = "Test"
        else:
            raise ValueError("")

        self.loaded_data = self._load_data(self.split)

    def _load_data(self, split):
        with np.load(osp.join(self.ROOT, split, 'all_metadata.npz')) as data:
            self.scenes = data['scenes']
            self.sceneids = data['sceneids']
            self.images = data['images']
            self.intrinsics = data['intrinsics'].astype(np.float32)
            self.trajectories = data['trajectories'].astype(np.float32)
            self.pairs = data['pairs'][:, :2].astype(int)

    def __len__(self):
        return len(self.pairs)

    def _get_views(self, idx, resolution, rng):

        image_idx1, image_idx2 = self.pairs[idx]

        views = []
        for view_idx in [image_idx1, image_idx2]:
            scene_id = self.sceneids[view_idx]
            scene_dir = osp.join(self.ROOT, self.split, self.scenes[scene_id])

            intrinsics = self.intrinsics[view_idx]
            camera_pose = self.trajectories[view_idx]
            basename = self.images[view_idx]

            # Load RGB image
            rgb_image = imread_cv2(osp.join(scene_dir, 'vga_wide', basename.replace('.png', '.jpg')))
            # Load depthmap
            depthmap = imread_cv2(osp.join(scene_dir, 'lowres_depth', basename), cv2.IMREAD_UNCHANGED)
            depthmap = depthmap.astype(np.float32) / 1000
            depthmap[~np.isfinite(depthmap)] = 0  # invalid

            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx)

            views.append(dict(
                img=rgb_image,
                depthmap=depthmap.astype(np.float32),
                camera_pose=camera_pose.astype(np.float32),
                camera_intrinsics=intrinsics.astype(np.float32),
                dataset='arkitscenes',
                label=self.scenes[scene_id] + '_' + basename,
                instance=f'{str(idx)}_{str(view_idx)}',
            ))

        return views


if __name__ == "__main__":
    from dust3r.datasets.base.base_stereo_view_dataset import view_name
    from dust3r.viz import SceneViz, auto_cam_size
    from dust3r.utils.image import rgb

    dataset = ARKitScenes(split='train', ROOT="data/arkitscenes_processed", resolution=224, aug_crop=16)

    for idx in np.random.permutation(len(dataset)):
        views = dataset[idx]
        assert len(views) == 2
        print(view_name(views[0]), view_name(views[1]))
        viz = SceneViz()
        poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]]
        cam_size = max(auto_cam_size(poses), 0.001)
        for view_idx in [0, 1]:
            pts3d = views[view_idx]['pts3d']
            valid_mask = views[view_idx]['valid_mask']
            colors = rgb(views[view_idx]['img'])
            viz.add_pointcloud(pts3d, colors, valid_mask)
            viz.add_camera(pose_c2w=views[view_idx]['camera_pose'],
                           focal=views[view_idx]['camera_intrinsics'][0, 0],
                           color=(idx * 255, (1 - idx) * 255, 0),
                           image=colors,
                           cam_size=cam_size)
        viz.show()